首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In 1968 a U.S. B-52 bomber from USA with four nuclear weapons crashed on the sea ice near the Thule air base and contaminated the surroundings. Most of contamination was recovered during the cleanup program. However, some of the plutonium still remains in the bottom sediments of the area. In 1997 an international expedition with a comprehensive sampling program was performed. A lot of sediment samples were taken with a Finnish Gemini corer. Sediment samples from 5 sampling stations, 80 samples altogether, were pretreated in Ris, Denmark, and analysed for transuranic elements at STUK, Finland. The samples were analysed primarily for Pu, but gamma-spectrometric measurements of 241Am were also made. Generally, the Pu concentrations in the area studied were from 1 to 3 magnitudes higher than the fallout level in the Arctic sea area. None of the vertical profiles of Pu at the various stations showed a typical Pu peak originating from the accident in 1968, but the sediments were mixed down and contaminated to the depths studied (20 cm). The presence of large quantities of hot particles distorted the estimations of mean concentrations and inventories. Samples with plutonium from the accident show significant variations of nuclide ratios, 238Pu/239,240Pu, 241Pu/239,240Pu and 241Pu/241Am. This indicates that Pu at Thule may be from more than one source of different quality.  相似文献   

2.
Particles composed of radioactive materials and probably originating from US nuclear weapons were identified in sea sediment samples collected from Thule, Greenland, in 1997. The weapons were destroyed close to the Thule Air Base in 1968 in an aeroplane crash, which dispersed radioactive materials in the environment. The presence of particulate radioactive materials in the sediment samples was revealed by combining gamma-spectrometry and autoradiography. Isolation and separation of a radioactive particle from a bulk sample were performed using autoradiography, phosphor plate imaging and scanning electron microscopy. Using X-ray microanalysis as well as alpha and beta activity analysis, U and weapons-grade Pu were detected in the granular, brittle particle.  相似文献   

3.
Six radioactive particles stemming from Thule area (NW-Greenland) were investigated by gamma-ray and L X-ray spectrometry based on radioactive disintegration, scanning electron microscopy coupled with energy-dispersive and wavelength-dispersive X-ray spectrometer, synchrotron radiation based techniques as microscopic X-ray fluorescence, microscopic X-ray absorption near-edge structure (μ-XANES) as well as combined X-ray absorption and fluorescence microtomography. Additionally, one particle from Mururoa atoll was examined by microtomography. From the results obtained, it was found out that the U and Pu were mixed in the particles. The U/Pu intensity ratios in the Thule particles varied between 0.05 and 0.36. The results from the microtomography showed that U/Pu ratio was not homogeneously distributed. The 241Am/238 + 239 + 240Pu activity ratios varied between 0.13 and 0.17, indicating that the particles originate from different source terms. The oxidation states of U and Pu as determined by μ-XANES showed that U(IV) is the preponderant species and for Pu, two types of particles could be evidenced. One set had about 90% Pu(IV) while in the other the ratio Pu(IV)/Pu(VI) was about one third.  相似文献   

4.
The application of scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS) for characterization of mixed plutonium and uranium particles from nuclear weapons material is presented. The particles originated from the so-called Thule accident in Greenland in 1968. Morphological properties have been studied by SEM and two groups were identified: a "popcorn" structure and a spongy structure. The same technique, coupled with an energy-dispersive X-ray (EDX) spectrometer, showed a heterogeneous composition of Pu and U in the surface layers of the particles. The SIMS depth profiles revealed a varying isotopic composition indicating a heterogeneous mixture of Pu and U in the original nuclear weapons material itself. The depth distributions agree with synchrotron-radiation-based mu-XRF (X-ray fluorescence microprobe) measurements on the particle (Eriksson, M., Wegryzynek, D., Simon, R., & Chinea-Cano, E., in prep.) when a SIMS relative sensitivity factor for Pu to U of 6 is assumed. Different SIMS identified isotopic ratio groups are presented, and the influence of interferences in the Pu and U mass range are estimated. The study found that the materials are a mixture of highly enriched 235U (235U:238U ratio from 0.96 to 1.4) and so-called weapons grade Pu (240Pu:239Pu ratio from 0.028 to 0.059) and confirms earlier work reported in the literature.  相似文献   

5.
In order to validate and to gain confidence in two micro-beam techniques: particle induced X-ray emission with nuclear microprobe technique (μ-PIXE) and synchrotron radiation induced X-ray fluorescence in a confocal alignment (confocal SR μ-XRF) for characterization of microscopic particles containing actinide elements (mixed plutonium and uranium) a comparative study has been performed. Inter-comparison of the two techniques is essential as the X-ray production cross-sections for U and Pu are different for protons and photons and not well defined in the open literature, especially for Pu.The particles studied consisted of nuclear weapons material, and originate either in the so called Palomares accident in Spain, 1966 or in the Thule accident in Greenland, 1968. In the determination of the average Pu/U mass ratios (not corrected by self-absorption) in the analysed microscopic particles the results from both techniques show a very good agreement. In addition, the suitability of both techniques for the analysis with good resolution (down to a few μm) of the Pu/U distribution within the particles has been proved. The set of results obtained through both techniques has allowed gaining important information concerning the characterization of the remaining fissile material in the areas affected by the aircraft accidents. This type of information is essential for long-term impact assessments of contaminated sites.  相似文献   

6.
Methodology for the determination of 89,90Sr, Am and Pu isotopes in complex samples is given. Methodology is based on simultaneous isolation of Sr, Y and actinides from samples by mixed solvent anion exchange chromatography, mutual separation of 89,90Sr and 90Y from actinides, mutual separation of Th, Pu and Am by extraction chromatography, quantitative determination of 89,90Sr by Cherenkov counting and quantitative determination of Pu and Am isotopes in soil and vegetation samples by alpha spectrometry. It is shown that Y and Sr can be efficiently separated from alkaline, alkaline earth and transition elements as well as from lanthanides and actinides on the column filed by strong base anion exchanger in nitrate form and 0.25?M HNO3 in mixture of ethanol and methanol as eluent. It is also shown that Pu, Am and Th strongly binds on the mentioned column, can be separated from number of elements and easily be eluted from column by water. After elution actinides were mutually separated on TRU column and electrodeposited on stainless steel disc. Examination of conditions of electrodeposition was shown that chloride-oxalate electrolyte with addition of DTPA in presence of sodium hydrogen sulphate in cell with cooling and rotating platinum anode enables deposition of actinides within 1?h by 0.8?A?cm?2 current density. Obtained peaks FWHM for Pu, Am and Th isotopes are between 27 and 40?keV. Scanning electron microscopy picture and ED XRF analysis of electroplated discs showed that actinide deposition is followed by iron oxide formation on disc surface. The methodology was tested by determination of 89,90Sr, Am and Pu isotopes in ERA proficiency testing samples (low level activity samples). Obtained results shows that 89,90Sr, 241Am and 238,239Pu can be simultaneously separated on anion exchange column, 89,90Sr can be determined by Cherenkov counting with a satisfactory accuracy and limit of determination within 1?C3?days after separation. 241Am and 238,239Pu can easily be separated on TRU column and determined after electrodeposition with acceptable accuracy within 1?day.  相似文献   

7.
Age of individual uranium–plutonium (U/Pu) mixed particles with various U/Pu atomic ratios (1–70) were determined by inductively coupled plasma mass spectrometry. Micron-sized particles were prepared from U and Pu certified reference materials. The Pu reference was stored for 4–6 years since the last purification (July 14, 2008). The Pu purification age was obtained from the 241Am/241Pu ratio which was calculated from the product of three measured ratios of Pu and Am isotopes in the eluted fractions. These ratios were measured by a high-resolution inductively coupled plasma mass spectrometer equipped with a desolvation system. Femto-gram to pico-gram quantities of Am, U, and Pu in a sample solution were sequentially separated on a small anion-exchange column. The 241Am/241Pu ratio was accurately determined by spiking pure 243Am into the sample solution. The average determined age for the particles for the five independent U/Pu ratios was in good agreement with the expected age with high accuracy (difference age 0.27 years) and high precision (standard deviation 0.44 years). The described analytical technique can serve as an effective tool for nuclear safeguards and environmental radiochemistry.
Figure Young (4?6 y) Pu purification age of individual U/Pu mixed micron-sized reference particles for the five independent U/Pu ratios (1?70) were determined with 0.27±0.44 y difference from the expected age. Sub pico-gram quantities of Am, U and Pu were sequentially separated a small column, and their isotope ratios were accurately measured using an ICP-MS by applying the 243Am spiking technique to the analysis and correcting the impurity and the contaminations.
  相似文献   

8.
The objectives of this study were to establish a ratio for241Am to239Pu in soil at the Rocky Flats Plant and to compare241Am concentrations obtained using in-situ and laboratory gamma spectroscopy measurements to concentrations determined with radiochemical analysis and alpha spectroscopy. Soil samples were collected for radiochemical and laboratory gamma spectroscopy analysis from vertical profiles in 3 cm layers to a depth of 21 cm at predetermined locations along transects oriented in the direction of prevailing winds. The origin for the transects was the center of the 903 Pad at the Rocky Flats Plant, which is believed to be the source for most of the241Am and239Pu contamination. A 100 minute in-situ gamma spectroscopy measurement was made at each soil sample location with a portable HPGe detector. Soil samples were dried, passed through a 2 mm sieve, mixed, and split in two fractions. One fraction was analyzed radiochemically for241Am and239Pu and the second was analyzed using laboratory gamma spectroscopy. The median ratio of241Am to239Pu activities, which appears to be independent of soil depth and distance from suspected sources, was 0.17. There is a strong correlation between241Am and239Pu concentrations determined using radiochemical analysis with alpha spectroscopy and concentrations determined with laboratory gamma spectroscopy. Results from in-situ gamma spectroscopy measurements were also correlated with the radiochemical analyses but exhibited greater variability than laboratory measurements. This on-going investigation has demonstrated that it is possible to indirectly measure239Pu concentrations in soil if the ratio of241Am to239Pu can be established. The results indicate that judicious use of a combination of radiochemical analyses with laboratory and in-situ gamma spectroscopy measurements may provide a cost-effective approach for characterization of large sites where241Am and239Pu contamination occur.  相似文献   

9.
The present distributions of 239+240Pu, 241Am and activity ratio of 241Am/239+240Pu in surface seawater of the Peninsular Malaysia east coast were studied. The surface seawater samples were collected at 30 identified stations during the expedition conducted in 2008. 239+240Pu activity concentrations in surface seawater of the studied area were in the range of 2.33 ± 0.20–7.95 ± 0.68 mBq/m3, meanwhile 241Am activity concentrations ranged from MDA to 1.90 ± 0.23 mBq/m3. The calculated activity ratios of 241Am/239+240Pu were varied and disperse distributed with the ranged of 0.12–0.53. The relationships between anthropogenic radionuclide and oceanographic parameters such as turbidity and salinity were examined. The linearly relationships between 239+240Pu and oceanographic parameters are important for better understanding of its transport processes and behavior in the east coast of Peninsular Malaysia marine environment. Thus, the differ of distribution of 239+240Pu, 241Am and 241Am/239+240Pu in the studied area mainly due to high affinity of 239+240Pu to associate with sinking particles, mobility nature of 241Am, degree of particle reactive of both anthropogenic radionuclides, scavenging and removal process; and others.  相似文献   

10.
Fecal radiobioassay is a sensitive tool to estimate intake of radionuclides, especially for insoluble or poorly absorbed actinides. To increase efficiency and reduce turnaround time, improvements were introduced in the sample digestion step of a fecal bioassay method to rapidly detect Pu and Am. The acid- and microwave-digestion of the spiked fecal samples (5–10 g) were effectively completed in 1 h. The turnaround time for the sample analysis was minimized to 6 h. The average recoveries for Pu and Am were 35% and 60% for artificial fecal samples, respectively. Much better recoveries for Pu and Am were obtained for natural fecal samples. Observed relative biases for Pu and Am were marginally in the range of -0.25 to +0.50. The relative precision values for both radionuclides were, however, within the performance index of 0.4. This rapid fecal method is a potential candidate for an acceptable quantitative radiobioassay and screening method for the suspected Pu/Am exposures.  相似文献   

11.
This paper describes the experimental studies carried out to determine (238)Pu, (239/40)Pu, (241)Pu, (241)Am, (242)Cm and (244)Cm in samples from nuclear power plants (mainly spent ion exchange resins and evaporator concentrates) using an organophosphorus compound immobilized on an inert support. These materials are commercially available under the name TRU Resin (for Transuranium Specific) from Eichrom Industries, Darien, IL. An attempt is made to develop a rapid, accurate method of analysis, with minimum waste generation. Standard solutions of Pu and Am and one sample of spent ion exchange resin that contains fission, activation products, Pu, Am and Cm were analyzed to study the separation factors and interferences in the measurement of Pu, Am and Cm isotopes.  相似文献   

12.
The simultaneous determination of multiple actinide isotopes in samples where total quantity is limited can sometimes present a unique challenge for radioanalytical chemists. In this study, re-determination of 238Pu, 239+240Pu, and 241Am for soils collected and analyzed approximately three decades ago was the goal, along with direct determination of 241Pu. The soils had been collected in the early 1970’s from a shallow land burial site for radioactive wastes called the Subsurface Disposal Area (SDA) at the Idaho National Lab (INL), analyzed for 238Pu, 239+240Pu, and 241Am, and any remaining soils after analysis had been archived and stored. We designed an approach to reanalyze the 238Pu, 239+240Pu, and 241Am and determine for the first time 241Pu using a combination of traditional and new radioanalytical methodologies. The methods used are described, along with estimates of the limits of detection for gamma-and alpha-spectrometry, and liquid scintillation counting. Comparison of our results to the earlier work documents the ingrowth of 241Am from 241Pu, and demonstrates that the total amount of 241Am activity in these soil samples is greater than would be expected due to ingrowth from 241Pu decay.  相似文献   

13.
Studies of plutonium in the environment have focused on the α-emitting isotopes 238Pu, 239Pu and 240Pu, often overlooking the β-emitting isotope 241Pu  because of its relatively short half-life (14.4 years). Here, we summarize sources of  241Pu and discuss its distribution and behavior in the environment. In the short term, 241Pu, the largest contributor to the total plutonium radioactivity whereas in the long term its decay products, 241Am and 237Np, are the major contributors as some 46% of current total 241Am is attributable to 241Pu decay. In this context, understanding the fate and transport of 241Pu is crucial to assessing long-term radiological dose.  相似文献   

14.
The determination of Am and Cm in a radiochemical procedure for the sequential analysis of Pu, Am, and Cm in soils was improved and optimized. This method uses only solvent extraction and extraction chromatography for the separation and cleaning of Am and Cm from soils up to 50 g sample weight. After leaching with 8M nitric acid, Pu is extracted with TOPO/cyclohexane. Am and Cm are extracted out of the remaining leaching solution at pH 1 with TOPO/cyclohexane, too. After backextraction with 2M nitric acid, Am and Cm are separated from traces of matrix elements, especially Fe, on a TRU-column, afterwards on a TEVA-column from lanthanides (TRU-resin and TEVA-resin of Eichrom Europe, SARL, Paris, France). The clean Am/Cm-fraction is electroplated and measured by alpha-spectrometry. The detection limit of this optimized procedure is 0.03 Bq/kg soil at a 95% confidence level.  相似文献   

15.
It is well known that ammunition containing depleted uranium (DU) was used by NATO during the Balkan conflict. To evaluate the origin of DU (the enrichment of natural uranium or the reprocessing of spent nuclear fuel) it is necessary to directly detect the presence of activation products ((236)U, (239)Pu, (240)Pu, (241)Am, and (237)Np) in the ammunition. In this work the analysis of actinides by alpha-spectrometry was compared with that by inductively coupled plasma mass spectrometry (ICP-MS) after selective separation of ultratraces of transuranium elements from the uranium matrix. (242)Pu and (243)Am were added to calculate the chemical yield. Plutonium was separated from uranium by extraction chromatography, using tri- n-octylamine (TNOA), with a decontamination factor higher than 10(6); after elution plutonium was determined by ICP-MS ((239)Pu and (240)Pu) and alpha-spectrometry ((239+240)Pu) after electroplating. The concentration of Pu in two DU penetrator samples was 7 x 10(-12) g g(-1) and 2 x 10(-11) g g(-1). The (240)Pu/(239)Pu isotope ratio in one penetrator sample (0.12+/-0.04) was significantly lower than the (240)Pu/(239)Pu ratios found in two soil samples from Kosovo (0.35+/-0.10 and 0.27+/-0.07). (241)Am was separated by extraction chromatography, using di(2-ethylhexyl)phosphoric acid (HDEHP), with a decontamination factor as high as 10(7). The concentration of (241)Am in the penetrator samples was 2.7 x 10(-14) g g(-1) and <9.4 x 10(-15) g g(-1). In addition (237)Np was detected at ultratrace levels. In general, ICP-MS and alpha-spectrometry results were in good agreement.The presence of anthropogenic radionuclides ((236)U, (239)Pu,(240)Pu, (241)Am, and (237)Np) in the penetrators indicates that at least part of the uranium originated from the reprocessing of nuclear fuel. Because the concentrations of radionuclides are very low, their radiotoxicological effect is negligible.  相似文献   

16.
A sequential radiochemical scheme for the separation of Pu and Am (along with Cm) from environmental materials is given. Optimum conditions for coprecipitation of these elements on bismuth phosphate and the influence of Fe and Th content of the sample on the recovery of Am were studied. Internal tracers242Pu and243Am were used as tracers for Pu and Am, respectively, and estimates were made by alpha-spectrometry. Average recoveries obtained from sea water were 85% and 77% for Pu and Am, respectively. Lower recoveries (<50%) were obtained for Am in sediments. Work carried out as part of the International Atomic Energy Agency Research Contract 1954/RB/RI.  相似文献   

17.
The plutonium and americium concentration and vertical distribution in some Italian mosses and lichens have been determined. The239,240Pu,238Pu and241Am concentration ranges in tree trunk lichens 0.83–1.87, 0.052–0.154 and 0.180–0.770 Bq/kg, respectively. The corresponding values in tree mosses are higher and more scattered ranging from 0.321 to 4.96, from 0.029 to 0.171 and from 0.200 to 1.93 Bq/kg. The mean238Pu/239,240Pu and241Am/239,240Pu ratios are 0.088±0.037 and 0.38±0.13 in lichens and 0.091±0.072 and 0.54±0.16 in tree mosses. The Pu and Am concentrations are relatively low in terrestrial mosses. The239,240Pu,238Pu and241Am vertical distributions in a terrestrial moss core (Neckera Crispa) collected near Urbino (central Italy) show an exponential decrease with the height. On the contrary the241Am vertical distribution in another terrestrial moss core (Sphagnum Compactum) collected in the Alps (northern Italy) shows an interesting peak at 16 cm which corresponds to the deposition of fallout from the nuclear weapon tests in 1960's. The241Am movement upward and downward in the moss core is also studied. The results show once again that both mosses and lichens are very effective accumulators of Pu and Am and that they can be used as good biological indicators of the radionuclide airbome pollution from nuclear facilities and nuclear weapon tests. They can play a very impotant role in cycling naturally or artificially enhanced radionuclides in the atmosphere over long time scales.  相似文献   

18.
A new procedure for the analysis of Pu and Am in large water samples is presented. In this procedure, the actinides are first preconcentrated from 200 liter water samples with combined MnO2 and Fe(OH)3 co-precipitation. Pu and Am are then separated from the large amount of Mn by performing a second precipitation of Fe(OH)3 at pH 6. The final separation of Pu and Am from interfering elements and from each other is achieved with the use of a single extraction chromatographic column of TRU-ResinÔ. The -activities are then determined using -spectrometry after source preparation by CeF3 micro co-precipitation. The procedure described is faster, simpler, more robust and gives higher chemical yields then procedures normally used for routine analysis of Pu and Am. The chemical yields of Pu and Am, when analysing 200 liter sea water samples, are between 80-85%.  相似文献   

19.
Stripping of the nuclides U, Np, Pu, Am, Eu, Zr, Ru and Fe from the loaded TRUEX solvent (0.2M CMPO+1.2M TBP in dodecane) has been carried out with a potassium ferrocyanide solution. In four contacts, 98% or more of U, Pu, Am and Eu could be stripped whereas Zr and Ru recoveries were 94% and 92%, respectively. Further, the co-precipitation of Am, Pu, U and Eu on ferric ferrocyanide precipitate from the CMPO phase has shown high recovery of Am, Pu and Eu but lower for U.  相似文献   

20.
This study presents a rapid and quantitative sequential radiochemical separation method for Pu, U, Am and Sr isotopes in environmental samples with extraction chromatographic resins. After radionuclides were leached from the samples with 6 M HNO3, Pu and U isotopes were adsorbed onto the UTEVA column and Am isotopes were adsorbed onto the TRU column connected with the UTEVA column. Also, 90Sr was adsorbed onto the Sr column connected with the TRU column. Pu and U isotopes were purified from other nuclides through the UTEVA column. In addition, Am isotopes were separated from other nuclides with the TRU column. Finally, 90Sr was purified with the Sr resin. After α source preparation for the purified Pu, U and Am isotopes with micro-coprecipitation method, Pu, U and Am isotopes were measured using alpha spectrometry. On the other hand, 90Sr was measured using a low level liquid scintillation counter. The radiochemical procedure for Pu, U, Am and Sr nuclides investigated in this study has been applied to environmental samples after validating the simulated samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号