首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 312 毫秒
1.
通过静电纺丝技术和热处理制备了Li0.35Zn0.3Fe2.35O4纳米纤维和碳纳米纤维,并将它们各自均匀分散在硅橡胶基质中,测量了相应复合体在2~18GHz频率范围内的相对复介电常数和复磁导率,并根据传输线理论评估了由它们所构成的单层和双层结构吸波体的微波吸收特性。结果显示由于Li0.35Zn0.3Fe2.35O4纳米纤维与碳纳米纤维的电磁特性的有机结合,双层吸波体的微波吸收性能明显优于同厚度的单层吸波体。当以厚为1.8mm的Li0.35Zn0.3Fe2.35O4纳米纤维/硅橡胶复合体为吸收层和厚为0.2mm的碳纳米纤维/硅橡胶复合体为匹配层时,双层吸波体的反射率在13.9GHz达到一个最小值-47.8dB,反射率低于-10dB的吸收带宽为8.8GHz,频率范围为9.2~18GHz,反射率小于-20dB的频率范围为11.5~18GHz,带宽为6.5GHz,覆盖整个Ku波段。优化设计的双层吸波体有望作为一种轻质高效的Ku波段微波吸收材料。  相似文献   

2.
采用静电纺丝技术结合后续热处理制备了尖晶石型Li0.35Zn0.3Fe2.35O4微纳米纤维. 利用差示扫描量热(DSC)-热重分析(TGA)、 傅里叶变换红外光谱(FTIR)、 X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)等手段研究了煅烧温度(700, 800, 900, 1000 ℃)对产物物相和形貌的影响; 利用矢量网络分析仪分析了纤维状产物的吸波性能. 研究结果表明, Li0.35Zn0.3Fe2.35O4在700 ℃及以上温度煅烧后可生成单一尖晶石结构. 随着煅烧温度的升高, 产物依次呈现出微纳米纤维状、 三维网络状、 竹节状和颗粒状的微观形貌. 随着匹配厚度增加, 微纳米纤维状Li0.35Zn0.3Fe2.35O4的最低反射率向低频移动, 在8 GHz以下的最佳匹配厚度为6 mm, 在此厚度下吸波性能优良, 最低反射率为-26 dB, 对应的吸收频率为5.0 GHz, 低于-10 dB的吸收频带为4.0~8.0 GHz, 带宽为4 GHz.  相似文献   

3.
采用静电纺丝技术结合稳定化和碳化处理原位制备了Fe-Ni/C复合纳米纤维, 其平均直径约为215 nm, 所生成的Fe-Ni合金纳米颗粒较均匀地分布在碳基纳米纤维的内部和表面, 且被石墨化碳层所包覆. 以Fe-Ni/C复合纳米纤维为吸收剂、 硅橡胶为基质制备成吸波涂层, 研究了碳化温度对电磁特性和微波吸收性能的影响. 结果表明, 涂层厚度为1.2~2.0 mm、 Fe-Ni/C复合纳米纤维质量分数为5%的吸波涂层表现出优良的微波吸收性能, 在7.4~18 GHz频率范围内的反射损耗均低于-20 dB; 随着复合纳米纤维的碳化温度由800 ℃升高到1200 ℃, 由于阻抗匹配特性的改善, 吸波涂层的微波吸收能力逐步加强, 其最小反射损耗由-22.6 dB降低到-63.0 dB.  相似文献   

4.
熊冬柏  杨春明 《应用化学》2009,26(9):1054-1059
在十六烷基三甲基溴化胺(CTAB)存在下,将苯胺(An)与吡咯(Py)两种单体在Fe3O4磁流体中原位化学氧化共聚制备了PAn-co-PPy/Fe3O4网状纳米纤维复合材料。通过改变CTAB的浓度、An/Py单体的配比及Fe3O4磁流体的用量获得了形态和电磁性能可调控的纳米纤维复合物。采用SEM、TEM、XRD、TG、电导和磁性能测试对复合物进行了表征,通过矢量网络分析仪获得了试样在2-18 GHz范围的复介电常数和复磁导率,经计算获取相应的微波反射损耗曲线。结果表明共聚复合物具有比单一的聚合物、共聚物、PAn/Fe3O4及PPy/Fe3O4更优越的微波吸收性能,样品(含Fe3O412.4 wt%)在9.0 GHz处具有最大的反射损耗为 -36.5 dB,损耗超过 -10 dB的频带宽度达4.7 GHz。  相似文献   

5.
采用静电纺丝技术结合后续热处理制备了尖晶石型Li_(0.35)Zn_(0.3)Fe_(2.35)O_4微纳米纤维.利用差示扫描量热(DSC)-热重分析(TGA)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)等手段研究了煅烧温度(700,800,900,1000℃)对产物物相和形貌的影响;利用矢量网络分析仪分析了纤维状产物的吸波性能.研究结果表明,Li_(0.35)Zn_(0.3)Fe_(2.35)O_4在700℃及以上温度煅烧后可生成单一尖晶石结构.随着煅烧温度的升高,产物依次呈现出微纳米纤维状、三维网络状、竹节状和颗粒状的微观形貌.随着匹配厚度增加,微纳米纤维状Li_(0.35)Zn_(0.3)Fe_(2.35)O_4的最低反射率向低频移动,在8 GHz以下的最佳匹配厚度为6 mm,在此厚度下吸波性能优良,最低反射率为-26 d B,对应的吸收频率为5.0 GHz,低于-10 d B的吸收频带为4.0~8.0 GHz,带宽为4 GHz.  相似文献   

6.
通过在氩气中碳化含有乙酰丙酮金属盐的电纺聚丙烯腈纳米纤维合成了镶嵌(Fe1-xCox)0.8Ni0.2(x=0.25,0.50,0.75)合金纳米粒子的碳纳米纤维,用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、振动样品磁强计(VSM)和矢量网络分析仪(VNA)等对其物相、形貌、微观结构、静磁及电磁特性进行表征和分析,并根据传输线理论模拟计算了2~18 GHz频率范围内的微波吸收性能。结果表明:所制备的复合纳米纤维具有典型的铁磁特征,由无定形碳、石墨和面心立方结构Fe-Co-Ni合金三相组成,原位形成的合金纳米粒子沿纤维轴向均匀分布,且被有序石墨层所包覆。磁损耗和介电损耗间的协同作用及特殊的核/壳微观结构使仅含5%(w/w)的(Fe1-xCox)0.8Ni0.2/C复合纳米纤维的硅胶基吸波涂层表现出优异的微波吸收性能。当涂层厚度为1.1~5.0 mm时,x=0.25、0.50和0.75的样品最小反射损耗分别达到-78.5、-80.2和-63.4 d B,反射损耗在-20 d B以下的吸收带宽分别为14.9、14.8和14.5 GHz,几乎覆盖整个S波段至Ku波段。通过调节合金的组成可对材料的电磁特性及微波吸收性能进行一定程度的控制。  相似文献   

7.
钡铁氧体纳米复合材料的制备及其微波吸收性能   总被引:28,自引:0,他引:28  
采用聚乙二醇(PEG)凝胶法制备了Ba(Zn1-xCox)2Fe16O27复合氧化物纳米材料,用X射线衍射分析对产物进行了表征.将制得的材料与传统的微波吸收剂铁粉结合起来,制成双层复合的吸波涂层,进行测试.实验结果表明,所制材料对微波具有良好的吸收性能.并进一步对纳米复合材料的吸波机理进行了探讨.  相似文献   

8.
采用静电纺丝法制备(1-x)Ni0.5Zn0.5Fe2O4-(x)Pb(Zr0.52Ti0.48)O3(简称为(1-x)NZFO-(x)PZT, x=0.1、0.2、0.3、0.4、0.5)磁电复合纳米纤维, 研究了PZT含量对复合纳米纤维结构、电磁特性及微波吸收性能的影响。所有样品均由尖晶石结构NZFO和钙钛矿结构PZT两相所组成。由于NZFO磁损耗与PZT介电损耗的协同效应及界面效应的加强, 适量PZT相的引入可改善复合纳米纤维吸波涂层的电磁阻抗匹配和衰减特性, 提高微波吸收性能。x=0.3和0.4的复合纳米纤维分别在低频和高频范围表现出最强的微波吸收能力。当涂层厚度为2.5~5.0 mm时, x=0.3样品的最小反射损耗在6.1 GHz处达-77.2 dB, 反射损耗小于-10 dB的有效吸收带宽为11.2 GHz(2.8~12.9和16.9~18 GHz);x=0.4样品的最小反射损耗位于18 GHz处为-37.6 dB, 有效吸收带宽达到12.5 GHz(3.3~12.5和14.7~18 GHz)。  相似文献   

9.
采用静电纺丝法制备(1-x)Ni0.5Zn0.5Fe2O4-(x)Pb(Zr0.52Ti0.48)O3(简称为(1-x)NZFO-(x)PZT, x=0.1、0.2、0.3、0.4、0.5)磁电复合纳米纤维, 研究了PZT含量对复合纳米纤维结构、电磁特性及微波吸收性能的影响。所有样品均由尖晶石结构NZFO和钙钛矿结构PZT两相所组成。由于NZFO磁损耗与PZT介电损耗的协同效应及界面效应的加强, 适量PZT相的引入可改善复合纳米纤维吸波涂层的电磁阻抗匹配和衰减特性, 提高微波吸收性能。x=0.3和0.4的复合纳米纤维分别在低频和高频范围表现出最强的微波吸收能力。当涂层厚度为2.5~5.0 mm时, x=0.3样品的最小反射损耗在6.1 GHz处达-77.2 dB, 反射损耗小于-10 dB的有效吸收带宽为11.2 GHz(2.8~12.9和16.9~18 GHz);x=0.4样品的最小反射损耗位于18 GHz处为-37.6 dB, 有效吸收带宽达到12.5 GHz(3.3~12.5和14.7~18 GHz)。  相似文献   

10.
通过在氩气中碳化含有乙酰丙酮金属盐的电纺聚丙烯腈纳米纤维合成了镶嵌(Fe1-xCox0.8Ni0.2x=0.25,0.50,0.75)合金纳米粒子的碳纳米纤维,用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、振动样品磁强计(VSM)和矢量网络分析仪(VNA)等对其物相、形貌、微观结构、静磁及电磁特性进行表征和分析,并根据传输线理论模拟计算了2~18 GHz频率范围内的微波吸收性能。结果表明:所制备的复合纳米纤维具有典型的铁磁特征,由无定形碳、石墨和面心立方结构Fe-Co-Ni合金三相组成,原位形成的合金纳米粒子沿纤维轴向均匀分布,且被有序石墨层所包覆。磁损耗和介电损耗间的协同作用及特殊的核/壳微观结构使仅含5%(w/w)的(Fe1-xCox0.8Ni0.2/C复合纳米纤维的硅胶基吸波涂层表现出优异的微波吸收性能。当涂层厚度为1.1~5.0 mm时,x=0.25、0.50和0.75的样品最小反射损耗分别达到-78.5、-80.2和-63.4 dB,反射损耗在-20 dB以下的吸收带宽分别为14.9、14.8和14.5 GHz,几乎覆盖整个S波段至Ku波段。通过调节合金的组成可对材料的电磁特性及微波吸收性能进行一定程度的控制。  相似文献   

11.
Nano-crystals of Li0.35Zn0.3Fe2.35O4 ferrite have been synthesized using citrate precursor method. The sample synthesized was sintered at different temperatures in order to vary their crystallite size. The average crystallite size was found in the range 24?C57?nm by varying the temperature from 300 to 1,100?°C. X-ray diffraction measurements confirmed the formation of cubic spinel structure at all the sintering temperatures in this work. The high frequency performance of the ferrite samples were estimated by measuring the frequency dispersion of the dielectric constant, dielectric loss and ac electrical conductivity. The dielectric constant has been observed to show normal behavior with frequency and decreases with the decrease in crystallite size. It is also observed that decrease in dielectric constant depends on sintering temperature because of lithium evaporation at higher temperature. A low value of dielectric constant and dielectric loss has been found, which makes them applicable for high frequency applications by decreasing the skin effect. The impedance spectroscopy technique has been used to study the effect of grain and grain boundary on the electrical properties of Li0.35Zn0.3Fe2.35O4 ferrite. The analysis of data shows only one semi-circle corresponding to the grain boundary volume suggesting that the conduction mechanism takes place predominantly through grain boundary volume in the prepared samples.  相似文献   

12.
Sm-doped strontium ferrite nanopowders (SrSm0.3Fe11.7O19) and their composites of polyaniline (PANI)/SrSm0.3Fe11.7O19 with 10 wt% and 20 wt% ferrite were prepared by a sol–gel method and an in-situ polymerization process, respectively. The structure, magnetic properties and microwave absorption properties of the samples were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and vector network analyzer, respectively. The particle size of SrSm0.3Fe11.7O19 was about 35 nm by using XRD. The ferrite successfully packed by PANI. PANI/SrSm0.3Fe11.7O19 possessed the best absorption property with the optimum matching thickness of 3 mm in the frequency of 2–18 GHz. The value of the maximum reflection loss (RL) were −26.0 dB at 14.2 GHz with the 6.5 GHz bandwidth and −24.0 dB at 13.8 GHz with the 7.9 GHz bandwidth for the samples with 10 wt% and 20 wt% ferrite, respectively.  相似文献   

13.
《Arabian Journal of Chemistry》2020,13(11):7978-7989
This work presents a study of microwave absorption properties of PAni/Fe3O4/PVA nanofiber composites with different ratio of Fe3O4 nanoparticles. The morphology of the composites nanofibers study by Field Emission Scanning Electron Microscopes (FESEM) and Transmission Electron Microscope (TEM) showed that the low content of Fe3O4 nanoparticles presence in the composites nanofibers indicates very much uniform surface, in the composites nanofiber without many bends, but some bends develop at higher content of Fe3O4 nanoparticles as indicated in the TEM image. Image-J software was used to further investigate the diameter of the composites nanofiber and found to be in the range of 152 to 195 nm. The nanofiber composites show excellent electric and magnetic properties and therefore vary with the addition of Fe3O4 nanoparticles in the composites nanofiber. In addition the PAni/Fe3O4/PVA composites nanofibers were further characterized by X-ray diffraction spectra (XRD) and Four Transformation infrared spectra (FTIR). The XRD pattern shows the presence of PAni nanotubes containing Fe3O4 nanoparticles by indicating peaks at 23.4⁰ and 35.43⁰ which was further supported by FTIR analysis. Microwave vector network analyzers (MVNA) were used to estimate the microwave absorption properties of the composites nanofibers. The absorption parameters was found to be −6.4 dB at 12.9 GHz within the range of X-band microwave absorption frequency, this reflection loss is attributed to the multiple absorption mechanisms as a result of the improved of impedance matching between dielectric and magnetic loss of the absorbent materials demonstrating that these materials can be used as protective material for electromagnetic radiation.  相似文献   

14.
Novel magnetic composites (Ni0.5Zn0.5Fe2O4-MWCNTs) of multi-walled carbon nanotubes (MWCNTs) coated with Ni0.5Zn0.5Fe2O4 nanocrystals were synthesized by chemical precipitation-hydrothermal process. The composites were characterized by X-ray powder diffractometer (XRD), X-ray photoelectron spectrometer (XPS), Fourier transform infrared spectroscopy (FTIR), Mössbauer spectroscopy (MS), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), etc. A temperature of about 200 °C was identified to be an appropriate hydrothermal condition to obtain Ni0.5Zn0.5Fe2O4-MWCNTs, being lower than the synthesis temperature of a single-phase Ni0.5Zn0.5Fe2O4 nanocrystals. The sizes of Ni0.5Zn0.5Fe2O4 in the composites were smaller than those of Ni0.5Zn0.5Fe2O4 nanocrystals in single phase. The composites exhibited more superparamagnetic than Ni0.5Zn0.5Fe2O4 nanocrystals in their relaxation behaviors. The magnetic properties measured by a vibrating sample magnetometer showed that the composites had a high coercive field of 386.0 Oe at room temperature, higher than those of MWCNT and Ni0.5Zn0.5Fe2O4 nanocrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号