首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromium-doped silicon clusters, CrSi(n) (-)(n = 3-12), were investigated with anion photoelectron spectroscopy and density functional theory calculations. The combination of experimental measurement and theoretical calculations reveals that the onset of endohedral structure in CrSi(n) (-) clusters occurs at n = 10 and the magnetic properties of the CrSi(n) (-) clusters are correlated to their geometric structures. The most stable isomers of CrSi(n) (-) from n = 3 to 9 have exohedral structures with magnetic moments of 3-5μ(B) while those of CrSi(10) (-), CrSi(11) (-), and CrSi(12) (-) have endohedral structures and magnetic moments of 1μ(B.).  相似文献   

2.
We conducted a combined anion photoelectron spectroscopy and density functional theory study on the structural evolution of copper-doped silicon clusters, CuSi(n)(-) (n = 4-18). Based on the comparison between the experiments and theoretical calculations, CuSi(12)(-) is suggested to be the smallest fully endohedral cluster. The low-lying isomers of CuSi(n)(-) with n ≥ 12 are dominated by endohedral structures, those of CuSi(n)(-) with n < 12 are dominated by exohedral structures. The most stable structure of CuSi(12)(-) is a double-chair endohedral structure with the copper atom sandwiched between two chair-style Si(6) rings or, in another word, encapsulated in a distorted Si(12) hexagonal prism cage. CuSi(14)(-) has an interesting C(3h) symmetry structure, in which the Si(14) cage is composed by three four-membered rings and six five-membered rings.  相似文献   

3.
The electronic and geometrical structures of three nitrogen-doped aluminum clusters, Al(x)N(-) (x=3-5), are investigated using photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra have been obtained for the nitrogen-doped aluminum clusters at four photon energies (532, 355, 266, and 193 nm). Global minimum structure searches for Al(x)N(-) (x=3-5) and their corresponding neutrals are performed using several theoretical methods. Vertical electron detachment energies are calculated using three different methods for the lowest energy structures and low-lying isomers are compared with the experimental observations. Planar structures have been established for all the three Al(x)N(-) (x=3-5) anions from the joint experimental and theoretical studies. For Al(5)N(-), a low-lying nonplanar isomer is also found to contribute to the experimental spectra, signifying the onset of two-dimensional to three-dimensional transition in nitrogen-doped aluminum clusters. The chemical bonding in all the planar clusters has been elucidated on the basis of molecular orbital and natural bond analyses.  相似文献   

4.
Negatively charged sodium auride clusters, NanAun- (n = 1-3), have been investigated experimentally using photoelectron spectroscopy and ab initio calculations. Well-resolved electronic transitions were observed in the photoelectron spectra of NanAun- (n = 1-3) at several photon energies. Very large band gaps were observed in the photoelectron spectra of the anion clusters, indicating that the corresponding neutral clusters are stable closed-shell species. Calculations show that the global minimum of Na2Au2- is a quasi-linear species with Cs symmetry. A planar isomer of D2h symmetry is found to be 0.137 eV higher in energy. The two lowest energy isomers of Na3Au3- consist of three-dimensional structures of Cs symmetry. The global minimum of Na3Au3- has a bent-flake structure lying 0.077 eV below a more compact structure. The global minima of the sodium auride clusters are confirmed by the good agreement between the calculated electron detachment energies of the anions and the measured photoelectron spectra. The global minima of neutral Na2Au2 and Na3Au3 are found to possess higher symmetries with a planar four-membered ring (D2h) and a six-membered ring (D3h) structure, respectively. The chemical bonding in the sodium auride clusters is found to be highly ionic with Au acting as the electron acceptor.  相似文献   

5.
The geometric and electronic structures of both neutral and negatively charged lead sulfide clusters, (PbS)(n)/(PbS)(n)(-) (n = 2-10) were investigated in a combined anion photoelectron spectroscopy and computational study. Photoelectron spectra provided vertical detachment energies (VDEs) for the cluster anions and estimates of electron affinities (EA) for their neutral cluster counterparts, revealing a pattern of alternating EA and VDE values in which even n clusters exhibited lower EA and VDE values than odd n clusters up until n = 8. Computations found neutral lead sulfide clusters with even n to be thermodynamically more stable than their immediate (odd n) neighbors, with a consistent pattern also being found in their HOMO-LUMO gaps. Analysis of neutral cluster dissociation energies found the Pb(4)S(4) cube to be the preferred product of the queried fragmentation processes, consistent with our finding that the lead sulfide tetramer exhibits enhanced stability; it is a magic number species. Beyond n = 10, computational studies showed that neutral (PbS)(n) clusters in the size range, n = 11-15, prefer two-dimensional stacking of face-sharing lead sulfide cubical units, where lead and sulfur atoms possess a maximum of five-fold coordination. The preference for six-fold coordination, which is observed in the bulk, was not observed at these cluster sizes. Taken together, the results show a preference for the formation of slightly distorted, fused cuboids among small lead sulfide clusters.  相似文献   

6.
Structures of the beryllium-centered germanium clusters Be@Ge(n)(z) (n = 8, 7, 6; z = -4, -2, 0, +2) have been investigated by density functional theory to provide some insight regarding the smallest metal cluster that can encapsulate an interstitial atom. The lowest energy structures of the eight-vertex Be@Ge(8)(z) clusters (z = -4, -2, 0, +2) all have the Be atom at the center of a closed polyhedron, namely, a D(4d) square antiprism for Be@Ge(8)(4-), a D(2d) bisdisphenoid for Be@Ge(8)(2-), an ideal O(h) cube for Be@Ge(8), and a C(2v) distorted cube for Be@Ge(8)(2+). The Be-centered cubic structures predicted for Be@Ge(8) and Be@Ge(8)(2+) differ from the previously predicted lowest energy structures for the isoelectronic Ge(8)(2-) and Ge(8). This appears to be related to the larger internal volume of the cube relative to other closed eight-vertex polyhedra. The lowest energy structures for the smaller seven- and six-vertex clusters Be@Ge(n)(z) (n = 7, 6; z = -4, -2, 0, +2) no longer have the Be atom at the center of a closed Ge(n) polyhedron. Instead, either the Ge(n) polyhedron has opened up to provide a larger volume for the Be atom or the Be atom has migrated to the surface of the polyhedron. However, higher energy structures are found in which the Be atom is located at the center of a Ge(n) (n = 7, 6) polyhedron. Examples of such structures are a centered C(2v) capped trigonal prismatic structure for Be@Ge(7)(2-), a centered D(5h) pentagonal bipyramidal structure for Be@Ge(7), a centered D(3h) trigonal prismatic structure for Be@Ge(6)(4-), and a centered octahedral structure for Be@Ge(6). Cluster buildup reactions of the type Be@Ge(n)(z) + Ge(2) → Be@Ge(n+2)(z) (n = 6, 8; z = -4, -2, 0, +2) are all predicted to be highly exothermic. This suggests that interstitial clusters having an endohedral atom inside a bare post transition element polyhedron with eight or fewer vertices are less than the optimum size. This is consistent with the experimental observation of several types of 10-vertex polyhedral bare post transition element clusters with interstitial atoms but the failure to observe such clusters with external polyhedra having eight or fewer vertices.  相似文献   

7.
Photoelectron spectroscopy is used to investigate aluminum dideuteride cluster anions, AlnD2- (n=3,6-15), produced by laser vaporization of a pure Al target with a D2-seeded helium carrier gas. Comparison between the well-resolved photoelectron spectra of AlnD2- and Aln- reveals the nature of interactions between D2 and Aln-. Depending on the size of the Aln- clusters and their electronic structure, three types of AlnD2- species are observed, dideuteride (dissociative chemisorption), molecular chemisorption, and physisorption. Striking spectral similarities are observed between photoelectron spectra of AlnD2- and Aln- for n=9, 11, 13, and 15, suggesting that D2 is physisorbed on these closed-shell Aln- clusters. For AlnD2- with n=3, 6, 7, and 10, completely different spectra are observed in comparison with the corresponding Aln- clusters, suggesting that the AlnD2- species may be characterized as dideuterides. For AlnD2- with n=8, 12, and 14, in which the Aln- clusters are open shell, the D2 is characterized as chemisorption on the basis of spectral shifts and similarities relative to those of the corresponding Aln- clusters.  相似文献   

8.
Iron-pyrene cluster anions, [Fe(m)(pyrene)(n)](-) (m = 1-2, n = 1-2) were studied in the gas phase by photoelectron spectroscopy, resulting in the determination of their electron affinity and vertical detachment energy values. Density functional theory calculations were also conducted, providing the structures and spin multiplicities of the neutral clusters and their anions as well as their respective electron affinity and vertical detachment energy values. The calculated magnetic moments of neutral Fe(1)(pyrene)(1) and Fe(2)(pyrene)(1) clusters suggest that a single pyrene molecule could be a suitable template on which to deposit small iron clusters, and that these in turn might form the basis of an iron cluster-based magnetic material. A comparison of the structures and corresponding photoelectron spectra for the iron-benzene, iron-pyrene, and iron-coronene cluster systems revealed that pyrene behaves more similarly to coronene than to benzene.  相似文献   

9.
The structures of AgSi(n) (n=1-13) clusters are investigated using first-principles calculations. Our studies suggest that AgSi(n) clusters with n=7 and 10 are relatively stable isomers and that these clusters prefer to be exohedral rather than endohedral. Moreover, doping leaves the inner core structure of the clusters largely intact. Additionally, the plot of fragmentation energies as a function of silicon atoms shows that the AgSi(n) are favored to dissociate into one Ag atom and Si(n) clusters. Alternative pathways exist for n>7 (except n=11) in which the Ag-Si cluster dissociates into a stable Si(7) and a smaller fragment AgSi(n-7). The AgSi(11) cluster dissociates into a stable Si(10) and a small fragment AgSi. Lastly, our analysis indicates that doping of Ag atom significantly decreases the gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital for n>7.  相似文献   

10.
Anion photoelectron spectroscopic experiments and calculations based on density functional theory have been used to investigate and uniquely identify the structural, electronic, and magnetic properties of both neutral and anionic (Rh(m)Co(n)) and (Rh(m)Co(n))(-) (m=1-5, n=1-2) clusters, respectively. Negative ion photoelectron spectra are presented for electron binding energies up to 3.493 eV. The calculated electron affinities and vertical detachment energies are in good agreement with the measured values. Computational results for geometric structures and magnetic moments of both cluster anions and their neutrals are presented.  相似文献   

11.
王金月  胡常伟  李平  向明礼  肖慎修 《化学学报》2004,62(23):2313-2318
使用密度泛函理论的离散变分方法(DFT-DVM)研究了双帽Keggin型杂多阴离子[PM12O40(VO)2]n-(M=Mo, n=5; M=V, n=9),即[PMo12O40(VO)2]5- (a)和[PV12O40(VO)2]9- (b)的电子结构,讨论了双帽的形成对Keggin型杂多阴离子的电子结构和催化性质的影响,并与其Keggin型杂多阴离子(PM12O40)n-(M=Mo, n=3; M=V, n=15)的计算结果进行了对比分析,计算结果表明,双帽的形成对Keggin型杂多阴离子的电子结构产生了很大的影响,因而它们在催化活性上可能会表现出较大的差异.  相似文献   

12.
The structures and the electronic properties of two Al-doped boron clusters, AlB(9)(-) and AlB(10)(-), were investigated via joint photoelectron spectroscopy and high-level ab initio study. The photoelectron spectra of both anions are relatively broad and have no vibrational structure. The geometrical structures were established by unbiased global minimum searches using the Coalescence Kick method and comparison between the experimental and calculated vertical electron detachment energies. The results show that both clusters have quasi-planar structures and that the Al atom is located at the periphery. Chemical bonding analysis revealed that the global minimum structures of both anions can be described as doubly (σ- and π-) aromatic systems. The nona-coordinated wheel-type structure of AlB(9)(-) was found to be a relatively high-lying isomer, while a similar structure for the neutral AlB(9) cluster was previously shown to be either a global minimum or a low-lying isomer.  相似文献   

13.
The ground- and several excited states of metal aromatic clusters, namely NaM(4) and NaM(4) (+/-) (M=Al,Ga,In) clusters have been investigated by employing complete active-space self-consistent-field followed by multireference singles and doubles configuration interaction computations that included up to 10 million configurations and other methods. The ground states NaM(4) (-) of aromatic anions are found to be symmetric C(4nu) ((1)A(1)) electronic states with ideal square pyramid geometries. While the ground state of NaIn(4) is also predicted to be a symmetric C(4nu) ((2)A(1)) square pyramid, the ground state of the NaAl(4) cluster is found to have a C(2nu) ((2)A(1)) pyramid with a rhombus base, and the ground state of NaGa(4) possesses a C(2nu) ((2)A(1)) pyramid with a rectangle base. In general, these structures exhibit two competing geometries, viz., an ideal C(4nu) structure and a distorted rhomboidal or rectangular pyramid structure (C(2nu)). All of the ground states of the NaM(4) (+) (M=Al,Ga,In) cations are computed to be C(2nu) ((3)A(2)) pyramids with rhombus bases. The equilibrium geometries, vibrational frequencies, dissociation energies, adiabatic ionization potentials, adiabatic electron affinities for the electronic states of NaM(4) (M=Al,Ga,In), and their ions are computed and compared with experimental results and other theoretical calculations. On the basis of our computed excited states energy separations, we have tentatively suggested assignments to the observed X and A states in the anion photoelectron spectra of Al(4)Na(-) reported by Li et al. [X. Li, A. E. Kuznetov, H. F. Zheng, A. I. Boldyrev, and L. S. Wang, Science 291, 859 (2001)]. The X state can be assigned to a C(2nu) ((2)A(1)) rhomboidal pyramid. The A state observed in the anion spectrum is assigned to the first excited state ((2)B(1)) of the neutral NaAl(4) with the C(4nu) symmetry. The assignments of the excited states are consistent with the experimental excitation energies and the previous Green's function-based methods for the vertical transition energy separations between the X and A bands.  相似文献   

14.
The effects of homogeneous and heterogeneous solvation on the electronic structure and photodetachment dynamics of hydrated carbon dioxide cluster anions are investigated using negative-ion photoelectron imaging spectroscopy. The experiments are conducted on mass-selected [(CO(2))(n)()(H(2)O)(m)()](-) cluster anions with n and m ranging up to 12 and 6, respectively, for selected clusters. Homogeneous solvation in (CO(2))(n)()(-) has minimal effect on the photoelectron angular distributions, despite dimer-to-monomer anion core switching. Heterogeneous hydration, on the other hand, is found to have the marked effect of decreasing the photodetachment anisotropy. For example, in the [CO(2)(H(2)O)(m)()](-) cluster anion series, the photoelectron anisotropy parameter falls to essentially zero with as few as 5-6 water molecules. The analysis of the data, supported by theoretical modeling, reveals that in the ground electronic state of the hydrated clusters the excess electron is localized on CO(2), corresponding to a (CO(2))(n)()(-).(H(2)O)(m)() configuration for all cluster anions studied. The diminishing anisotropy in the photoelectron images of hydrated cluster anions is proposed to be attributable to photoinduced charge transfer to solvent, creating transient (CO(2))(n)().(H(2)O)(m)()(-) states that subsequently decay via autodetachment.  相似文献   

15.
We report a photoelectron imaging study of the [O(N(2)O)(n)](-), 0or=4 (and up to at least n=9) signatures of an O(-) core are predominantly observed. Photofragmentation studies at 355 nm support these results.  相似文献   

16.
The molecular structures of neutral Si n Li ( n = 2-8) species and their anions have been studied by means of the higher level of the Gaussian-3 (G3) techniques. The lowest energy structures of these clusters have been reported. The ground-state structures of neutral clusters are "attaching structures", in which the Li atom is bound to Si n clusters. The ground-state geometries of anions, however, are "substitutional structures", which is derived from Si n+1 by replacing a Si atom with a Li (-). The electron affinities of Si n Li and Si n have been presented. The theoretical electron affinities of Si n are in good agreement with the experiment data. The reliable electron affinities of Si n Li are predicted to be 1.87 eV for Si 2Li, 2.06 eV for Si 3Li, 2.01 eV for Si 4Li, 2.61 eV for Si 5Li, 2.36 eV for Si 6Li, 2.21 eV for Si 7Li, and 3.18 eV for Si 8Li. The dissociation energies of Li atom from the lowest energy structures of Si n Li and Si atom from Si n clusters have also been estimated respectively to examine relative stabilities.  相似文献   

17.
TiO2 is a wide-band-gap semiconductor, and it is an important material for photocatalysis. Here we report an experimental investigation of the electronic structure of (TiO2)n clusters and how their band gap evolves as a function of size using anion photoelectron spectroscopy (PES). PES spectra of (TiO2)n- clusters for n = 1-10 have been obtained at 193 nm (6.424 eV) and 157 nm (7.866 eV). The high photon energy at 157 nm allows the band gap of the TiO2 clusters to be clearly revealed up to n = 10. The band gap is observed to be strongly size-dependent for n < 7, but it rapidly approaches the bulk limit at n = 7 and remains constant up to n = 10. All PES features are observed to be very broad, suggesting large geometry changes between the anions and the neutral clusters due to the localized nature of the extra electron in the anions. The measured electron affinities and the energy gaps are compared with available theoretical calculations. The extra electron in the (TiO2)n- clusters for n > 1 appears to be localized in a tricoordinated Ti atom, creating a single Ti3+ site and making these clusters ideal molecular models for mechanistic understanding of TiO2 surface defects and photocatalytic properties.  相似文献   

18.
We report the observation of hydrated adenine anions, A(-)(H(2)O)(n), n=1-7, and their study by anion photoelectron spectroscopy. Values for photoelectron threshold energies, E(T), and vertical detachment energies are tabulated for A(-)(H(2)O)(n) along with those for hydrated uracil anions, U(-)(H(2)O)(n), which are presented for comparison. Analysis of these and previously measured photoelectron spectra of hydrated nucleobase anions leads to the conclusion that threshold energies significantly overstate electron affinity values in these cases, and that extrapolation of hydrated nucleobase anion threshold values to n=0 leads to incorrect electron affinity values for the nucleobases themselves. Sequential shifts between spectra, however, lead to the conclusion that A(-)(H(2)O)(3) is likely to be the smallest adiabatically stable, hydrated adenine anion.  相似文献   

19.
The equilibrium geometries, electronic structures and electronic properties including adiabatic electron affinity(AEA), vertical detachment energy(VDE), simulated photoelectron spectroscopy, HOMO-LUMO gap, charge transfer, and magnetic moment for DySi_n(n = 3~10) clusters and their anions were systematically investigated by using the ABCluster global search technique combined with the B3 LYP and B2 PLYP density functional methods. The results showed that the lowest energy structure of neutral DySi_n(n = 3~10) can be regarded as substituting a Si atom of the ground state structure of Si_(n+1) with a Dy atom. For anions, the extra electron effect on the structure is significant. Starting from n = 6, the lowest energy structures of DySi_n~?(n = 3~10) differ from those of neutral. The ground state is quintuplet electronic state for DySi_n(n = 3~10) excluding DySi_4 and DySi_9, which is a septet electronic state. For anions, the ground state is a sextuplet electronic state. The reliable AEA and VDE of DySi_n(n = 3~10) are reported. Analyses of HOMO-LUMO gaps indicated that doping Dy atom to silicon clusters can improve significantly their photochemical reactivity, especially for DySi_9. Analyses of NPA revealed that the 4 f electrons of Dy in DySi_4, DySi_9, and DySi_n~? with n = 4 and 6~10 participate in bonding. That is, DySi_nbelongs to the AB type. The 4 f electrons of Dy atom provide substantially the total magnetic moments for DySi_n and their anions. The dissociation energies of Ln(Ln = Pr, Sm, Eu, Gd, Ho, and Dy) fromLn Sin and their anions were evaluated to examine the relative stabilities.  相似文献   

20.
New low-lying isomeric structures of Ar(n)HF clusters are reported for n=6-13. They were determined using simulated annealing and evolutionary programming, for pairwise additive intermolecular potential energy surfaces. New global minima were found for the clusters with n=7, 10, 11. The new lowest-energy structure of Ar(7)HF and several new local minima for n=6, 7 clusters have the HF bound on a threefold surface site, consistent with the recent spectroscopic data for Ar(n)HF clusters in helium nanodroplets. A new type of low-energy local minima were determined for n=9-13 clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号