首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A hypothesis concerning FAB mechanisms, referred to as a 'bubble chamber FAB model', is proposed. This model can provide an answer to the long-standing question as to how fragile biomolecules and weakly bound clusters can survive under high-energy particle impact on liquids. The basis of this model is a simple estimation of saturated vapour pressure over the surface of liquids, which shows that all liquids ever tested by fast atom bombardment (FAB) and liquid secondary ion mass spectrometry (SIMS) were in the superheated state under the experimental conditions applied. The result of the interaction of the energetic particles with superheated liquids is known to be qualitatively different from that with equilibrium liquids. It consists of initiation of local boiling, i.e., in formation of vapour bubbles along the track of the energetic particle. This phenomenon has been extensively studied in the framework of nuclear physics and provides the basis for construction of the well-known bubble chamber detectors. The possibility of occurrence of similar processes under FAB of superheated liquids substantiates a conceptual model of emission of secondary ions suggested by Vestal in 1983, which assumes formation of bubbles beneath the liquid surface, followed by their bursting accompanied by release of microdroplets and clusters as a necessary intermediate step for the creation of molecular ions. The main distinctive feature of the bubble chamber FAB model, proposed here, is that the bubbles are formed not in the space and time-restricted impact-excited zone, but in the nearby liquid as a 'normal' boiling event, which implies that the temperature both within the bubble and in the droplets emerging on its burst is practically the same as that of the bulk liquid sample. This concept can resolve the paradox of survival of intact biomolecules under FAB, since the part of the sample participating in the liquid-gas transition via the bubble mechanism has an ambient temperature which is not destructive for biomolecules. Another important feature of the model is that the timescale of bubble growth is no longer limited by the relaxation time of the excited zone ( approximately 10(-12) s), but rather resembles the timescale characteristic of common boiling, sufficient for multiple interactions of gas molecules and formation of clusters. Further, when the bubbles burst, microdroplets are released, which implies that FAB processes are similar to those in spraying techniques. Thus, two processes contribute to the ion production, namely, release of volatile solvent clusters from bubbles and of non-volatile solute from sputtered droplets. This view reconciles contradictory views on the dominance of either gas-phase or liquid-phase effects in FAB. Some other effects, such as suppression of all other ions by surface-active compounds, are consistent with the suggested model.  相似文献   

2.
The contact between fine hydrophilic α-Al(2)O(3) particles and nitrogen bubbles was studied as a function of solution composition in single bubble capture experiments, where the bubble collection efficiency was measured. The surface charges of both bubble and particle were controlled by varying the electrolyte concentration and pH of the solution. In all experiments the bubbles were negatively charged while the α-Al(2)O(3) particles were either negatively (above pH of the isoelectric point, pH(IEP)) or positively (below pH(IEP)) charged. The collection efficiency was found to be strongly influenced by the surface charge of the particles. The maximum collection efficiency occurred when the bubble and particle were oppositely charged (at low pH values) and at low salt concentration, i.e. when a long range attractive electrostatic interaction is present. In the case where both bubble and particle were of the same charge, the collection efficiency was near to zero within experimental error and was not influenced by either salt concentration or pH. This is the first experimental proof of the concept of 'contactless flotation', first proposed by Derjaguin and Dukhin in 1960, with far reaching implications from minerals processing to biology.  相似文献   

3.
In this paper we present calculations of electron tunneling times from the ground electronic state of excess electron bubbles in ((4)He)(N) clusters (N=6500-10(7), cluster radius R=41.5-478 A), where the equilibrium bubble radius varies in the range R(b)=13.5-17.0 A. For the bubble center located at a radial distance d from the cluster surface, the tunneling transition probability was expressed as A(0)phi(d,R)exp(-betad), where beta approximately 1 A(-1) is the exponential parameter, A(0) is the preexponential factor for the bubble located at the cluster center, and phi(d,R) is a correction factor which accounts for cluster curvature effects. Electron tunneling dynamics is grossly affected by the distinct mode of motion of the electron bubble in the image potential within the cluster, which is dissipative (i.e., tau(D)tau(0)) in superfluid ((4)He)(N) clusters, where tau(D) is the bubble motional damping time (tau(D) approximately 4 x 10(-12) s for normal fluid clusters and tau(D) approximately 10 s for superfluid clusters), while tau(0) approximately 10(-9)-10(-10) s is the bubble oscillatory time. Exceedingly long tunneling lifetimes, which cannot be experimentally observed, are manifested from bubbles damped to the center of the normal fluid cluster, while for superfluid clusters electron tunneling occurs from bubbles located in the vicinity of the initial distance d near the cluster boundary. Model calculations of the cluster size dependence of the electron tunneling time (for a fixed value of d=38-39 A), with lifetimes increasing in the range of 10(-3)-0.3 s for N=10(4)-10(7), account well for the experimental data [M. Farnik and J. P. Toennies, J. Chem. Phys. 118, 4176 (2003)], manifesting cluster curvature effects on electron tunneling dynamics. The minimal cluster size for the dynamic stability of the bubble was estimated to be N=3800, which represents the threshold cluster size for which the excess electron bubble in ((4)He)(N) (-) clusters is amenable to experimental observation.  相似文献   

4.
Earlier studies have shown that the most stable structures for (ZnS)n clusters with n = 10-47 are hollow polyhedral clusters ("bubbles"). We report a detailed study of larger clusters, where n = 50, 60, 70, and 80, for which onionlike or "double bubble" structures are predicted. We report calculations of the vibrational spectra and the electronic structure of bubble and double bubble clusters, which may assist in their experimental identification.  相似文献   

5.
This paper is concerned with the detachment of particles from coalescing bubble pairs. Two bubbles were generated at adjacent capillaries and coated with hydrophobic glass particles of mean diameter 66 μm. The bubbles were then positioned next to each other until the thin liquid film between them ruptured. The particles that dropped from the bubble surface during the coalescence process were collected and measured. The coalescence process was very vigorous and observations showed that particles detached from the bubble surfaces as a result of the oscillations caused by coalescence. The attached particles themselves and, to some extent the presence of the surfactant had a damping affect on the bubble oscillation, which played a decisive role on the particle detachment phenomena. The behaviour of particles on the surfaces of the bubbles during coalescence was described, and implications of results for the flotation process were discussed.  相似文献   

6.
We find that the gas phases of air bubbles covered with anionic or cationic polystyrene latex particles dissolve on exposure to cationic and catanionic surfactants. The particles on the bubble interface are released as singlets or aggregates when the surfactant has a single hydrophobic chain, while porous colloidal capsules (colloidosomes) with the same aqueous phase inside as out are obtained when the surfactant has two hydrophobic chains. The formation of colloidosomes from the particle-covered bubbles does not appear to depend significantly on the charge of the particles, which makes it unlikely that bilayers of surfactant are stabilizing the colloidosome. While the exact mechanism of formation remains an open question, our method is a simple one-step process for obtaining colloidosomes from particle-covered bubbles.  相似文献   

7.
A two-dimensional theoretical model for solids-coated, or "armored," bubbles shows how the armor can support a liquid-vapor interface of reduced or reversed curvature between the particles, giving the bubble zero or even negative capillary pressure. The inward capillary force pulling the particles into the center of the bubble are balanced by large contact forces between the particles in the armor. Thus the bubble is stabilized against dissolution of gas into surrounding liquid, which otherwise would rapidly collapse the bubble. The stresses between particles in such cases are large and could drive sintering of the particles into a rigid framework. Earlier work on solids-coated bubbles assumed that solids can freely enter or leave the bubble surface as the bubble shrinks or expands. In such a case, armored bubbles would not be stable to gas dissolution into surrounding liquid. A new free-energy analysis, however, suggests that a shrunken bubble would not spontaneously expel a solid particle from its armor to relieve stress and allow the bubble to shrink further. Implications and limitations of the theory are discussed. Copyright 1999 Academic Press.  相似文献   

8.
Results on bubble coalescences from the space experiment of thermocapillary bubble migration conducted on board the Chinese 22nd recoverable satellite are presented in this paper. Some coalescences of large spherical bubbles under microgravity are observed through bubbles staying at the upper side of the test cell. The data of bubble coalescence time are recorded and compared with theoretical predictions, which is based on a theory to describe the tendency of coalescence connected to chemical potential difference. It is implied that the theory is applicable for the experimental data of bubble coalescence. Moreover, the angle between the line of two bubble centers and temperature gradient falled mostly in the range 20 degrees -40 degrees .  相似文献   

9.
We study how shearing clusters of two or four bubbles induces bubble separation or topological rearrangement. The critical deformation at which this yielding occurs is measured as a function of shear rate, liquid composition, and liquid content in the cluster. We establish a geometrical yield criterion in the quasistatic case on the basis of these experimental data as well as simulations. In the dynamic regime, the deformation where the cluster yields increases with the strain rate, and we derive a scaling law describing this phenomenon based on the dynamical inertial rupture of the liquid meniscus linking the two bubbles. Our experiments show that the same scaling law applies to two- and four-bubble clusters.  相似文献   

10.
When bubbles rise through a liquid they are known to scavenge dissolved surface-active materials (surfactants). Small bubbles in the size range of tens of micrometers quickly become covered with surfactants in any but the cleanest conditions. This has the effect of immobilizing the bubble surface and affecting the drag and therefore the bubble rise speed. A large number of bubbles rising as a cloud toward a free surface will populate the bulk surface with surfactants at a richness that far exceeds that which would occur in the absence of bubbling. However, in addition to the increased deposition of surfactants on the bulk surface, the random and agitated motions of the rising bubbles induce mixing of the liquid. In a companion paper (R. L. Stefan and A. J. Szeri, submitted for publication) the mixing properties of a bubble cloud rising toward a free surface were determined. In the present work, a model for the uptake of surfactants by bubbles and subsequent deposition on the bulk surface is developed including the crucial feature of bubble-induced fluid mixing. It is found that the mixing of desorbed surfactant down into the bulk is key to predicting what will be the enrichment of the bulk surface. Copyright 1999 Academic Press.  相似文献   

11.
We report the behavior of particle-stabilized bubbles (armored bubbles) when exposed to various classes and concentrations of surfactants. The bubbles are nonspherical, which is a signature of the jamming of the particles on the interface, and are stable to dissolution prior to the addition of surfactant. Armored bubbles exposed to surfactants, dissolve, and exhibit distinct morphological, microstructural, and lifetime changes, which correlate with the concentration of surfactant employed. For low concentrations of surfactant, an armored bubble remains nonspherical while dissolving, whereas for concentrations close to and above the surfactant cmc a bubble reverts to a spherical shape before dissolving. We propose a microstructural interpretation, supported by our experimental observations of particle dynamics on the bubble interface, that recognizes the role of interfacial jamming and stresses in particle-stabilization and surfactant-mediated destabilization of armored bubbles.  相似文献   

12.
A system of equations was obtained to describe the dynamics of bubbles in a cavitation cloud taking into account the interaction of pulsating bubbles involved in translational motion. The kinetics of cavitation bubble concentration changes, changes in the compressibility of the liquid, and phase transitions within a cavitation bubble and in the neighboring volume of the liquid were taken into account. The role played by bubble deformation in a cavitation cloud was considered. The Bernoulli pressure effect was shown to be negligible. The interaction of cavitation bubbles was a substantial factor that strongly influenced the dynamics of bubbles. It was suggested that there was at least one more mechanism that reduced sonoluminescence intensity from the multiple-bubble cavitation field, namely, a fairly high efficiency of sonoluminescence quenching could additionally be related to the arrival of a cumulative liquid stream at the central cavitation bubble region, where the concentration of active species was high. The dynamics of bubbles in the cavitation field is not only related to the expansion and compression of cavitation bubbles in the acoustic field, but also governed to a great extent by their interaction, translational motion, deformation, and the influence of cumulative streams penetrating the bubbles.  相似文献   

13.
The influence of salt concentration on the terminal velocities of gravity-driven single bubbles sliding along an inclined glass wall has been investigated, in an effort to establish whether surface forces acting between the wall and the bubble influence the latter's mobility. A simple sliding bubble apparatus was employed to measure the terminal velocities of air bubbles with radii ranging from 0.3 to 1.5 mm sliding along the interior wall of an inclined Pyrex glass cylinder with inclination angles between 0.6 and 40.1°. Experiments were performed in pure water, 10 mM and 100 mM KCl solutions. We compared our experimental results with a theory by Hodges et al. which considers hydrodynamic forces only, and with a theory developed by two of us which considers surface forces to play a significant role. Our experimental results demonstrate that the terminal velocity of the bubble not only varies with the angle of inclination and the bubble size but also with the salt concentration, particularly at low inclination angles of ~1-5°, indicating that double-layer forces between the bubble and the wall influence the sliding behavior. This is the first demonstration that terminal velocities of sliding bubbles are affected by disjoining pressure.  相似文献   

14.
The internal structure of clusters formed by colloidal heteroaggregation of particles with opposite signs of charge is studied by means of computer simulations. Every particle is surrounded by a layer of particles of opposite sign, a second neighbors shell of particles mainly with the same sign, a third one of opposite sign, etc. As the distance from the particle increases, the system becomes more homogeneous and no difference between the numbers of particles with similar or opposite signs of charge can be noticed for distances larger than ten times the particle radius. For low ionic concentrations the local environment of particles is formed by quasi-straight branches, where the sign of charge alternates, and at high concentrations the structure of the cluster is typical of DLCA and the alternation is restricted to very short distances. However, this effect is not responsible for the low fractal dimensions observed in charge heteroaggregates.  相似文献   

15.
The interaction between two bubbles coated with glass particles in the presence of a cationic surfactant (cetyltrimethylammonium bromide, CTAB) was studied experimentally. The time taken for two bubbles to coalesce was determined as a function of the fractional coverage of the surface by particles. The results suggested that the coalescence time increases with the bubble surface coverage. Interestingly, it was found that although the particles did not have any physical role in film rupture at low surface coverage, they still added resistance to film drainage. For particle-loaded bubbles, the initial resistance was due to the lateral capillary interactions between particles on the interface, which hold the particles firmly together. The coalescence dynamics of bubbles was also observed to be affected by the presence of attached particles.  相似文献   

16.
The sonication of an aqueous solution generates cavitation bubbles, which may coalesce and produce larger bubbles. This paper examines the effect of surface-active solutes on such bubble coalescence in an ultrasonic field. A novel capillary system has been designed to measure the change in the total volume resulting from the sonication of aqueous solutions with 515 kHz ultrasound pulses. This volume change reflects the total volume of larger gas bubbles generated by the coalescence of cavitation bubbles during the sonication process. The total volume of bubbles generated is reduced when surface-active solutes are present. We have proposed that this decrease in the total bubble volume results from the inhibition of bubble coalescence brought about by the surface-active solutes. The observed results revealed similarities with bubble coalescence data reported in the literature in the absence of ultrasound. It was found that for uncharged and zwitterionic surface-active solutes, the extent of bubble coalescence is affected by the surface activity of the solutes. The addition of 0.1 M NaCl to such solutes had no effect on the extent of bubble coalescence. Conversely, for charged surface-active solutes, the extent of bubble coalescence appears to be dominated by electrostatic effects. The addition of 0.1 M NaCl to charged surfactant solutions was observed to increase the total bubble volume close to that of the zwitterionic surfactant. This suggests the involvement of electrostatic interactions between cavitation bubbles in the presence of charged surfactants in the solution.  相似文献   

17.
The effect of centrifugal force on the resistance of rotating electrochemical cell with two vertical cylindrical electrodes with different radii (the outer electrode and the inner one) is analyzed. The resistance, which is caused by the gas bubbles formed on the outer electrode, is considered. One part of resistance is associated with the void fraction of interelectrode space, which is due to the bubbles moving in the radial direction from the outer electrode to the inner one under the action of centrifugal force. Another part of resistance is associated with screening of gas-evolving electrode surface with the bubbles, which have not been detached from the electrode. The variation in the sizes and velocity of bubbles moving in the interelectrode space due to the variation in the pressure in the radial direction as a result of the variation in the centrifugal acceleration is taken into account. The dependence of void fraction of interelectrode space on the radial coordinate, the distribution of resistance along the radial direction as a function of cell rotational rate and bubble radius at the instant of its detachment from the electrode, and the dependence of resistance, which is associated with electrode surface screening, on the radius of detached bubble are derived.  相似文献   

18.
In this study, bubbles are held by centripetal force at the center of a rotating cylinder filled with an aqueous solution. Their velocities along the axe of rotation, after application of an electrophoretic force, are used for the calculation of the so-called electrokinetic potential. But this process necessitates the elimination of the electro-osmosis which occurs on the interior sides of the glass cylinder by superposing a concurrent force on the bubble. Efficiency of DEAE-Dextran reticulated with 1,4 Butanediol Diglycidyl Ether can be tested by the observation of a cloud of latex microspheres injected in the interior of the tube and allowed to move in respect with the application of an electric field. The experimental control of these velocity profiles proves the adequacy of the polymer for many cases such as surfactant solutions, presence of electrolytes, utilization with moderate pH.The dynamic interpretation of the electrophoretic motion of bubbles is possible by considering that small ones behave like rigid spheres moving in a rotating fluid. In the second part of this paper and in a previous publication, we have experimentally proved that the use of the theoretical expressions of the forces involved for rigid spheres is justified for small bubbles. So, the electrokinetic potential can be expressed versus the velocity, leading to possible interpretations of the adsorption on gas-water interfaces.  相似文献   

19.
In this paper, a model for the formation of bubbles in carbonated beverages is presented. It has previously been shown that bubbles form from cellulose fibers within such beverages and the passage of such bubbles from the fibers to the liquid surface has been modeled. A model is thus presented here that considers the process of formation, which is governed by diffusion through the fiber and bubble surfaces. The model comprises two stages, growth and detachment, and it is shown here that both play an important role. The latter process is found to occur over a much shorter time scale than the former, enabling the models to be partially decoupled. The total number of bubbles released from individual fibers over time is found to be approximated well by an exponential relationship, and the parameters in this relationship are presented for a range of different detachment angles and fiber sizes. It is found that bubble formation is promoted in narrow, long tubes, but that the time constant is solely determined by the rate of diffusion across the liquid surface. The surface tension is found to have minimal influence on the number of bubbles produced.  相似文献   

20.
在二维射流流化床装置中,考察了压力对颗粒和气泡运动的影响规律.通过使用摄像技术详细的记录了压力下气泡的行为,并对其进行了分析,由此解决了较高压力下测量流态化性质较为困难的问题.数值研究通过CFD双欧拉模型模拟了带有V形分布器和中心射流的二维流化床内压力对气泡大小、床的膨胀率和射流深度的影响.实验和理论结果表明,在加压状态下,射流气速和分布板气速对气泡的产生、大小及形状有不同的影响.在较高的操作压力下,射流气速增加,气泡变长;分布器气速增大,气泡则变大;射流高度随着分布器气速的增加而降低.模拟结果与实验数据吻合较好,由此该模型为研究较高操作压力下射流流化床流化性质提供了有利的工具.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号