首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High resolution S0 --> Sn and T1 --> Tn electronic absorptions and B-type delayed fluorescence of 1,2,7,8-dibenzanthracene in polymethylmethacrylate (PMMA) were experimentally observed by flash and laser flash photolysis technique. Dibenzanthracene molecules were excited in a two-step process. In the first step, an excited singlet is created, which undergoes intersystem crossing to triplet state, then T-T absorption creates an excited triplet dibenzanthracene molecule, which returns to the first excited singlet level by intersystem crossing. The re-created first excited singlet of dibenzanthracene decays back to the ground state by emitting B-type of delayed fluorescence, which was observed at the same emission band of prompt (normal) fluorescence, and R-, E-, P-types of delayed fluorescences. For normal fluorescence, S1 state is decaying to S0 ground state. For E- and P-type of delayed fluorescences, T1 state is decaying to S0 via S1 state, and for B-type of delayed fluorescence, T2 state is decaying to S0 via S1 state.  相似文献   

2.
The electronic singlet-singlet and singlet-triplet electronic transitions of the isoalloxazine ring of the flavin core are studied using second-order perturbation theory within the framework of the CASPT2//CASSCF protocol. The main features of the absorption spectrum are computed at 3.09, 4.28, 4.69, 5.00, and 5.37 eV. The lowest singlet (S1) and triplet (T1) excited states are found to be both of pi character with a singlet-triplet splitting of 0.57 eV. On the basis of the analysis of the computed spin-orbit couplings and the potential energy hypersurfaces built for the relevant excited states, the intrinsic mechanism for photoinduced population of T1 is discussed. Upon light absorption, evolution of the lowest singlet excited state along the relaxation pathway leads ultimately to the population of the lowest triplet state, which is mediated by a singlet-triplet crossing with a state of npi* type. Subsequently a radiationless decay toward T1 through a conical intersection takes place. The intersystem crossing mechanism and the internal conversion processes documented here provide a plausible route to access the lowest triplet state, which has a key role in the photochemistry of the flavin core ring and is mainly responsible for the reactivity of the system.  相似文献   

3.
Abstract— Octa-aL-alkyloxy-substituted Zn-phthalocyanines are an interesting class of far red-absorbing photosensitizers. The chemical structure, the calculated steric conformation, the observed linear optical properties and an anomalous luminescence from a higher than S, excited state are reported. To study the optical properties of higher excited states and their occupation dynamics up to delay times of 15 ns we have carried out measurements of transient absorption spectra after 14 ps pulsed, resonant B-band and Q-band excitation. From these measurements the excited state singlet-singlet and triplet-triplet spectra as well as the intersystem crossing (ISC) quantum yields are obtained. The main result is an excitation wavelength-dependent ISC quantum yield that can be explained by an additional ISC channel between higher excited singlet and triplet states. The large rate of this channel is justified by the resonance between higher triplet states, observed in the triplet-triplet spectrum and the B, absorption band. Using kinetic model calculations, a lifetime of the higher excited singlet state of some picoseconds is predicted and the influence of a two-step absorption process on the population density of this higher excited singlet state is discussed.  相似文献   

4.
High resolution S0-->Sn and T1-->Tn electronic absorptions and B-type delayed fluorescence of 1,2,7,8-dibenzanthracene in polymethylmethacrylate (PMMA) were experimentally observed by flash and laser flash photolysis technique. Dibenzanthracene (hereafter DBA) molecules were excited in a two-step process. In the first step, an excited singlet is created, which undergoes intersystem crossing to triplet state, then T-T absorption creates an excited triplet dibenzanthracene molecule, which returns to the first excited singlet level by intersystem crossing. The re-created first excited singlet of dibenzanthracene decays back to the ground state by emitting B-type of delayed fluorescence, which was observed at the same emission band of prompt (normal) fluorescence, and R-, E-, P-types of delayed fluorescences. For normal fluorescence, S1 state is decaying to S0 ground state. For E- and P-type of delayed fluorescences, T1 state is decaying to S0 via S1 state, and for B-type of delayed fluorescence, T2 state is decaying to S0 via S1 state. The spectrum image showing the absorption/emission bands mentioned was also examined by image processing techniques in order to improve the visual experience of each band by localizing to a specific region of interest (ROI). Experimental results illustrate how the exact location of emission/absorption bands was clearly extracted from the spectral image and further improvements in the visual detection of absorption/emission bands.  相似文献   

5.
The primary photophysical and photochemical processes in the photochemistry of 1-acetoxy-2-methoxyanthraquinone (1a) were studied using femtosecond transient absorption spectroscopy. Excitation of 1a at 270 nm results in the population of a set of highly excited singlet states. Internal conversion to the lowest singlet npi* excited state, followed by an intramolecular vibrational energy redistribution (IVR) process, proceeds with a time constant of 150 +/- 90 fs. The 1npi* excited state undergoes very fast intersystem crossing (ISC, 11 +/- 1 ps) to form the lowest triplet pipi* excited state which contains excess vibrational energy. The vibrational cooling occurs somewhat faster (4 +/- 1 ps) than ISC. The primary photochemical process, migration of acetoxy group, proceeds on the triplet potential energy surface with a time constant of 220 +/- 30 ps. The transient absorption spectra of the lowest singlet and triplet excited states of 1a, as well as the triplet excited state of the product, 9-acetoxy-2-methoxy-1,10-anthraquinone (2a), were detected. The assignments of the transient absorption spectra were supported by time-dependent DFT calculations of the UV-vis spectra of the proposed intermediates. All of the stationary points for acyl group migration on the triplet and ground state singlet potential energy surfaces were localized, and the influence of the acyl group substitution on the rate constants of the photochemical and thermal processes was analyzed.  相似文献   

6.
We utilize femtosecond-to-microsecond time domain pump-probe transient absorption spectroscopy to interrogate for the first time the electronically excited triplet state of individualized single-wall carbon nanotubes (SWNTs). These studies exploit (6,5) chirality-enriched SWNT samples and poly[2,6-{1,5-bis(3-propoxysulfonic acid sodium salt)}naphthylene]ethynylene (PNES), which helically wraps the nanotube surface with periodic and constant morphology (pitch length = 10 ± 2 nm), providing a self-assembled superstructure that maintains structural homogeneity in multiple solvents. Spectroscopic interrogation of such PNES-SWNT samples in aqueous and DMSO solvents using E(22) excitation and a white-light continuum probe enables E(11) and E(22) spectral evolution to be monitored concomitantly. Such experiments not only reveal classic SWNT singlet exciton relaxation dynamics and transient absorption signatures but also demonstrate spectral evolution consistent with formation of a triplet exciton state. Transient dynamical studies evince that (6,5) SWNTs exhibit rapid S(1)→T(1) intersystem crossing (ISC) (τ(ISC) ~20 ps), a sharp T(1)→T(n) transient absorption signal (λ(max)(T(1)→T(n)) = 1150 nm; full width at half-maximum ≈ 350 cm(-1)), and a substantial T(1) excited-state lifetime (τ(es) ≈ 15 μs). Consistent with expectations for a triplet exciton state, T(1)-state spectral signatures and T(1)-state formation and decay dynamics for PNES-SWNTs in aqueous and DMSO solvents, as well as those determined for benchmark sodium cholate suspensions of (6,5) SWNTs, are similar; likewise, studies that probe the (3)[(6,5) SWNT]* state in air-saturated solutions demonstrate (3)O(2) quenching dynamics reminiscent of those determined for conjugated aromatic hydrocarbon excited triplet states.  相似文献   

7.
Two methylated thienocarbazoles and two of their synthetic nitro-precursors have been examined by absorption, luminescence, laser flash photolysis and photoacoustic techniques. Their spectroscopic and photophysical characterization involves fluorescence spectra, fluorescence quantum yields and lifetimes, and phosphorescence spectra and phosphorescence lifetimes for all the compounds. Triplet-singlet difference absorption spectra, triplet molar absorption coefficients, triplet lifetimes, intersystem crossing S1 --> T1 and singlet molecular oxygen yields were obtained for the thienocarbazoles. In the case of the thienocarbazoles it was found that the lowest-lying singlet and triplet excited states, S1 and T1, are of pi,pi* origin, whereas for their precursors S1 is n,pi*, and T1 is pi,pi*. In both thienocarbazoles it appears that the thianaphthene ring dictates the S1 --> T1 yield, albeit there is less predominance of that ring in the triplet state of the linear thienocarbazole, which leads to a decrease in the observed phiT value.  相似文献   

8.
A CASPT2/CASSCF study has been carried out to investigate the mechanism of the photolysis of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) under direct and triplet-sensitized irradiation. By exploring the detailed potential energy surfaces including intermediates, transition states, conical intersections, and singlet/triplet crossing points, for the first excited singlet (S(1)) and the low-lying triplet states (T(1), T(2), and T(3)), we provide satisfactory explanations of many experimental findings associated with the photophysical and photochemical processes of DBO. A key finding of this work is the existence of a significantly twisted S(1) minimum, which can satisfactorily explain the envelope of the broad emission band of DBO. It is demonstrated that the S(1) (n-pi*) intermediate can decay to the T(1) (n-pi*) state by undergoing intersystem crossing (rather inefficient) to the T(2) (pi-pi*) state followed by internal conversion to the T(1) state. The high fluorescence yield and the extraordinarily long lifetime of the singlet excited DBO are due to the presence of relatively high barriers, both for intersystem crossing and for C-N cleavage. The short lifetime of the triplet DBO is caused by fast radiationless decay to the ground state.  相似文献   

9.
The excited state dynamics in polycrystalline thin films of tetracene are studied using both picosecond fluorescence and femtosecond transient absorption. The solid-state results are compared with those obtained for monomeric tetracene in dilute solution. The room temperature solid-state fluorescence decays are consistent with earlier models that take into account exciton-exciton annihilation and exciton fission but with a reduced delayed fluorescence lifetime, ranging from 20-100 ns as opposed to 2?μs or longer in single crystals. Femtosecond transient absorption measurements on the monomer in solution reveal several excited state absorption features that overlap the ground state bleach and stimulated emission signals. On longer timescales, the initially excited singlet state completely decays due to intersystem crossing, and the triplet state absorption superimposed on the bleach is observed, consistent with earlier flash photolysis experiments. In the solid-state, the transient absorption dynamics are dominated by a negative stimulated emission signal, decaying with a 9.2 ps time constant. The enhanced bleach and stimulated emission signals in the solid are attributed to a superradiant, delocalized S(1) state that rapidly fissions into triplets and can also generate a second superradiant state, most likely a crystal defect, that dominates the picosecond luminescence signal. The enhanced absorption strength of the S(0)→S(1) transition, along with the partially oriented nature of our polycrystalline films, obscures the weaker T(1)→T(N) absorption features. To confirm that triplets are the major species produced by relaxation of the initially excited state, the delayed fluorescence and ground state bleach recovery are compared. Their identical decays are consistent with triplet diffusion and recombination at trapping or defect sites. The results show that complications like exciton delocalization, the presence of luminescent defect sites, and crystallite orientation must be taken into account to fully describe the photophysical behavior of tetracene thin films. The experimental results are consistent with the traditional picture that tetracene's photodynamics are dominated by exciton fission and triplet recombination, but suggest that fission occurs within 10 ps, much more rapidly than previously believed.  相似文献   

10.
Understanding the dynamics of the electronically excited states of nitrated polycyclic aromatic hydrocarbons (NPAHs) is of great importance since photochemical reactions determine the atmospheric stability of these toxic pollutants. From previous studies, it is known that electronically excited NPAHs evolve through two parallel pathways: The formation of the first triplet state and the dissociation of nitrogen (II) oxide. In this contribution, we present the first time-resolved emission measurements of the singlet excited states which are the precursors in the aforementioned photoprocesses. We analyzed 1-nitronaphthalene, 9-nitroanthracene, 1-nitropyrene, 6-nitrochrysene, and 3-nitrofluoranthene in solution samples. Although these compounds are considered nonfluorescent, with the frequency up-conversion method it was possible to detect the emission from the S1 states despite their femtosecond and picosecond lifetimes. Except for 1-nitronapthalene, where a single exponential is observed, for the rest of the compounds, the emission shows double-exponential decays indicating ultrafast structural changes in the excited states. From anisotropy measurements, we conclude that no significant internal conversion occurs in the singlet manifold after excitation in the first absorption band. In accord with El-Sayed rules and with previous calculations, the highly efficient intersystem crossing implied by the large triplet yields and the ultrafast S1 decays is accounted by the pi-pi* nature of the S1 and T1 states together with the existence of higher triplet configurations which act as receiver states. Our measurements show that NPAHs have the largest intersystem crossing rates observed to date in an organic molecule.  相似文献   

11.
The absorption and fluorescence spectra of some biologically active flavones have been studied as a function of the acidity (pH/H0) of the solution. Dissociation constants have been determined for the ground and first excited singlet states. The results are compared with those obtained from Forster-Weller calculations. The acidity constants obtained by fluorimetric titration method are in complete agreement (in most of the systems) with ground state data indicating a excited state deactivation prior to prototropic equilibration. Compared to umbelliferones, flavones are only weakly fluorescent in alkaline solution. This behaviour is explained by the small energy difference between the singlet excited state and triplet excited state giving rise to more efficient intersystem crossing. Most of the flavones studied here undergo adiabatic photodissociation in the singlet excited state indicating the formation of an exciplex or a phototautomer.  相似文献   

12.
Among the most important of chemical intermediates are the carbenes, characterized by a divalent carbon that generates low-lying biradical (triplet) and spin-paired (singlet) configurations with unique chemical reactivities. The "holy grail" of carbene chemistry has been determining the singlet-triplet gap and intersystem crossing rates. We report here the first high resolution spectra of singlet-triplet transitions in a prototypical singlet carbene, CHCl, which probe in detail the triplet state structure and spin-orbit coupling with the ground singlet state. Our spectra reveal a pronounced vibrational state dependence of the triplet state spin-spin splitting parameter, which we show is a sensitive probe of spin-orbit coupling with nearby singlet states. The parameters derived from our spectra, including a precise determination of the singlet-triplet energy gap, are in excellent agreement with recent ab initio calculations.  相似文献   

13.
An extensive photophysical characterization of 3-chloro-4-methylumbelliferone (3Cl4MU) in the ground-state, S(0), first excited singlet state, S(1), and lowest triplet state, T(1), was undertaken in water, neutral ethanol, acidified ethanol, and basified ethanol. Quantitative measurements of quantum yields (fluorescence, phosphorescence, intersystem crossing, internal conversion, and singlet oxygen formation) together with lifetimes were obtained at room and low temperature in water, dioxane/water mixtures, and alcohols. The different transient species were assigned and a general kinetic scheme is presented, summarizing the excited-state multiequilibria of 3Cl4MU. In water, the equilibrium is restricted to neutral (N*) and anionic (A*) species, both in the ground (pK(a) = 7.2) and first excited singlet states (pK(a)* = 0.5). In dioxane/water mixtures (pH ca. 6), substantial changes of the kinetics of the S(1) state were observed with the appearance of an additional tautomeric T* species. In low water content mixtures (mixture 9:1 v:v), only the neutral (N*) and tautomeric (T*) forms of 3Cl4MU are observed, whereas at higher water content mixtures (water mole fraction superior to 0.45), all three species N*, T*, and A* coexist in the excited state. In the triplet state, in the nonprotic and nonpolar solvent dioxane, the observed transient signals were assigned as the triplet-triplet transition of the neutral form, N*(T(1)) → N*(T(n)). In water, two transient species were observed and are assigned as the triplets of the neutral N*(T(1)) and the anionic form, A*(T(1)) (also obtained in basified ethanol). The phosphorescence spectra and decays of 3Cl4MU, in neutral, acidified, and basified solutions, demonstrate that only these two species N*(T(1)) and A*(T(1)) exist in the lowest lying triplet state, T(1). The radiative channel was found dominant for the deactivation of the anionic species, whereas with the neutral the S(1) ? S(0) internal conversion competes with fluorescence. For both N* and A* the intersystem crossing yield represents a minor deactivation channel for S(1).  相似文献   

14.
Femtosecond broadband transient absorption experiments of 1-nitropyrene, a nitro-polycyclic aromatic hydrocarbon of environmental concern are presented in cyclohexane and hexane solutions. The transient absorption spectra show the presence of three species that are assigned to the Franck-Condon excited lowest singlet (S1) state, the structurally relaxed S1 state, and the lowest excited triplet state. The spectral changes at early times are interpreted in terms of conformational dynamics; primarily due to an ultrafast rotation of the nitro group in the S1 state. This excited state relaxation is followed by intersystem crossing with a time constant of 7 ps. CIS/6-31G(d,p) calculations predict planarization of the nitro-aromatic torsional angle as the major nuclear relaxation coordinate, from 32.8 degrees at the HF/6-31G(d,p) level of theory in the ground state (27.46 degrees at B3LYP/6-31++G(d,p)) to 0.07 degrees in the S1 state. Vertical excitation energies at the TDDFT/6-31++G(d,p) and TDDFT/IEFPCM/6-31++G(d,p) levels of theory predict a small energy gap (<0.12 eV) between the S1(pipi*) state and the third excited triplet state T3(npi*) in the gas phase and in cyclohexane, respectively. The small energy gap suggests a large spin-orbit coupling between the S1(pipi*) and T3(npi*) states, which explains the ultrafast intersystem crossing of 1-nitropyrene in nonpolar solvents.  相似文献   

15.
Singlet and triplet low-lying states of the 4-dimethylaminobenzonitrile and its derivatives have been studied by the density functional theory and ab initio methodologies. Calculations reveal that the existence of the methyl groups in the phenyl ring and the amino twisting significantly modify properties of their excited states. A twisted singlet intramolecular charge-transfer state can be accessed through decay of the second planar singlet excited state with charge-transfer character along the amino twisting coordinate or by an intramolecular charge-transfer reaction involved with a locally first excited singlet state. Plausible charge-transfer triplet states and intersystem crossing processes among singlet and triplet states have been explored by spin-orbit coupling calculations. The intersystem crossing process was predicted to be the dominant deactivation channel of the photoexcited 4-dimethylaminobenzonitrile.  相似文献   

16.
Control over generation and dynamics of excited electronic states is fundamental to their utilization in all areas of technology. We present the first example of multichromophoric systems in which emissive triplet states are generated via a pathway involving photoinduced electron transfer (ET), as opposed to local intrachromophoric processes. In model dyads, PtP-Ph(n)-pRhB(+) (1-3, n = 1-3), comprising platinum(II) meso-tetraarylporphyrin (PtP) and Rhodamine B piperazine derivative (pRhB(+)), linked by oligo-p-phenylene bridges (Ph(n)), upon selective excitation of pRhB(+) at a frequency below that of the lowest allowed transition of PtP, room-temperature T(1)→S(0) phosphorescence of PtP was observed. The pathway leading to the emissive PtP triplet state includes excitation of pRhB(+), ET with formation of the singlet radical pair, intersystem crossing within that pair, and subsequent radical recombination. Because of the close proximity of the triplet energy levels of PtP and pRhB(+), reversible triplet-triplet (TT) energy transfer between these states was observed in dyads 1 and 2. As a result, the phosphorescence of PtP was extended in time by the long decay of the pRhB(+) triplet. Observation of ET and TT in the same series of molecules enabled direct comparison of the distance attenuation factors β between these two closely related processes.  相似文献   

17.
18.
The excited‐state dynamics of pentacene derivatives with stable radical substituents were evaluated in detail through transient absorption measurements. The derivatives showed ultrafast formation of triplet excited state(s) in the pentacene moiety from a photoexcited singlet state through the contributions of enhanced intersystem crossing and singlet fission. Detailed kinetic analyses for the transient absorption data were conducted to quantify the excited‐state characteristics of the derivatives.  相似文献   

19.
The experimental ultrafast photophysics of thioxanthone in several aprotic organic solvents at room temperature is presented, measured using femtosecond transient absorption together with high‐level ab initio CASPT2 calculations of the singlet‐ and triplet‐state manifolds in the gas phase, including computed state minima and conical intersections, transition energies, oscillator strengths, and spin–orbit coupling terms. The initially populated singlet ππ* state is shown to decay through internal conversion and intersystem crossing processes via intermediate nπ* singlet and triplet states, respectively. Two easily accessible conical intersections explain the favorable internal conversion rates and low fluorescence quantum yields in nonpolar media. The presence of a singlet–triplet crossing near the singlet ππ* minimum and the large spin–orbit coupling terms also rationalize the high intersystem crossing rates. A phenomenological kinetic scheme is proposed that accounts for the decrease in internal conversion and intersystem crossing (i.e. the very large experimental crescendo of the fluorescence quantum yield) with the increase of solvent polarity.  相似文献   

20.
The main photophysical properties of a series of recently synthetized 1,2‐ and 1,3‐squaraines, including absorption electronic spectra, singlet‐triplet energy gaps, and spin‐orbit matrix elements, have been investigated by means of density functional theory (DFT) and time‐dependent DFT approaches. A benchmark of three exchange‐correlation functionals has been performed in six different solvent environments. The investigated 1,2 squaraines have been found to possess two excited triplet states (T1 and T2) that lie below the energy of the excited singlet one (S1). The radiationless intersystem spin crossing efficiency is thus enhanced in both the studied systems and both the transitions could contribute to the excited singlet oxygen production. Moreover, they have a singlet‐triplet energy gap higher than that required to generate the cytotoxic singlet oxygen species. According to our data, these compounds could be used in photodynamic therapy applications that do not require high tissue penetration. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号