首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation is studied using a quantum dynamical approach based on a multi-dimensional shell model, with the shell radii being the dynamical variables. The Ne-NO interaction being only weakly anisotropic allows the model to account for the main dynamical features of the rare gas solid. Employing quantum wave packet propagation within the time dependent Hartree approximation, both, the static deformation of the solid due to the impurity and the dynamical response after femtosecond excitation, are analysed. The photoinduced dynamics of the surrounding rare gas atoms is found to be a complex high-dimensional process. The approach allows to consider realistic time-dependent femtosecond pulses and the effect of the pulse duration is clearly shown. Finally, using the pulse parameters of previous experiments, pump-probe signals are calculated and found to be in good agreement with experimental results, allowing for a clear analysis of the ultrafast mechanism of the energy transfer into the solid.  相似文献   

2.
The quantum theory for stimulated Raman spectroscopy from a moving wave packet using the third-order density matrix and polarization is derived. The theory applies, in particular, to the new technique of femtosecond broadband stimulated Raman spectroscopy (FSRS). In the general case, a femtosecond actinic pump pulse first prepares a moving wave packet on an excited state surface which is then interrogated with a coupled pair of picosecond Raman pump pulse and a femtosecond Raman probe pulse and the Raman gain in the direction of the probe pulse is measured. It is shown that the third-order polarization in the time domain, whose Fourier transform governs the Raman gain, is given simply by the overlap of a first-order wave packet created by the Raman pump on the upper electronic state with a second-order wave packet on the initial electronic state that is created by the coupling of the Raman pump and probe fields acting on the molecule. Calculations are performed on model potentials to illustrate and interpret the FSRS spectra.  相似文献   

3.
The intramolecular wave packet dynamics on the electronic B (3pi0) potential of Br2 in solid argon is induced and interrogated by femtosecond pump-probe spectroscopy. An effective potential of the chromophore in the solid is derived from the wave packet period for different excitation photon energies. Deep in the potential well, it is consistent with vibrational energies from wavelength-resolved spectra. It extends to higher energies, where the vibrational bands merge to a continuum, and even beyond the dissociation limit, thus quantifying the cage effect of the argon matrix. This advantage of pump-probe spectroscopy is related to a reduced contribution of homogeneous and inhomogeneous line broadenings. The vibrational energy relaxation rates are determined by a variation of the probe window spatial position via the probe quantum energy. A very large energy loss in the first excursion of the wave packet is observed near the dissociation limit. This strong interaction with the argon matrix is directly displayed in an experimental trajectory.  相似文献   

4.
In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappeared-it has simply been swept under the rug into the quantum force. In this paper we present a new formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex. This leads to a single equation for complex S, and ultimately complex x and p but there is a reward for this complexification-a significantly higher degree of localization. The quantum force in the new approach vanishes for Gaussian wave packet dynamics, and its effect on barrier tunneling processes is orders of magnitude lower than that of the classical force. In fact, the current method is shown to be a rigorous extension of generalized Gaussian wave packet dynamics to give exact quantum mechanics. We demonstrate tunneling probabilities that are in virtually perfect agreement with the exact quantum mechanics down to 10(-7) calculated from strictly localized quantum trajectories that do not communicate with their neighbors. The new formulation may have significant implications for fundamental quantum mechanics, ranging from the interpretation of non-locality to measures of quantum complexity.  相似文献   

5.
In this contribution, we extend our framework for analyzing and visualizing correlated many‐electron dynamics to non‐variational, highly scalable electronic structure method. Specifically, an explicitly time‐dependent electronic wave packet is written as a linear combination of N‐electron wave functions at the configuration interaction singles (CIS) level, which are obtained from a reference time‐dependent density functional theory (TDDFT) calculation. The procedure is implemented in the open‐source Python program det CI@ORBKIT, which extends the capabilities of our recently published post‐processing toolbox (Hermann et al., J. Comput. Chem. 2016, 37, 1511). From the output of standard quantum chemistry packages using atom‐centered Gaussian‐type basis functions, the framework exploits the multideterminental structure of the hybrid TDDFT/CIS wave packet to compute fundamental one‐electron quantities such as difference electronic densities, transient electronic flux densities, and transition dipole moments. The hybrid scheme is benchmarked against wave function data for the laser‐driven state selective excitation in LiH. It is shown that all features of the electron dynamics are in good quantitative agreement with the higher‐level method provided a judicious choice of functional is made. Broadband excitation of a medium‐sized organic chromophore further demonstrates the scalability of the method. In addition, the time‐dependent flux densities unravel the mechanistic details of the simulated charge migration process at a glance. © 2017 Wiley Periodicals, Inc.  相似文献   

6.
Spectral and phase shaping of femtosecond laser pulses is used to selectively excite vibrational wave packets on the ground (S0) and excited (S1) electronic states in the laser dye LD690. The transient absorption signals observed following excitation near the peak of the ground-state absorption spectrum are characterized by a dominant 586 cm(-1) vibrational mode. This vibration is assigned to a wave packet on the S0 potential energy surface. When the excitation pulse is tuned to the blue wing of the absorption spectrum, a lower frequency 568 cm(-1) vibration dominates the response. This lower frequency mode is assigned to a vibrational wave packet on the S1 electronic state. The spectrum and phase of the excitation pulse also influence both the dephasing of the vibrational wave packet and the amplitude profiles of the oscillations as a function of probe wavelength. Excitation by blue-tuned, positively chirped pulses slows the apparent dephasing of the vibrational coherences compared with a transform-limited pulse having the same spectrum. Blue-tuned negatively chirped excitation pulses suppress the observation of coherent oscillations in the ground state.  相似文献   

7.
McMurchie–Davidson recursion formula is extended to derive the ab initio molecular integrals with higher angular quantum number complex Gaussian type basis function which has complex‐valued center coordinates and a complex‐valued exponent. Using the analytical recursion formulae, some calculations of electronic dynamics after beta decay of tritium hydride molecular ion HT+ are performed by a quantum wave packet method with thawed Gaussian basis functions of s‐ and p‐type. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

8.
We regard the rovibrational wave packet dynamics of NaI in a static electric field after femtosecond excitation to its first electronically excited state. The following quasibound nuclear wave packet motion is accompanied by a bonding situation changing from covalent to ionic. At times when the charge separation is present, i.e., when the bond-length is large, a strong dipole moment exists and rotational excitation takes place. Upon bond contraction, the then covalently bound molecule does not experience the external field. This scenario repeats itself periodically. Thus, the vibrational dynamics causes a situation which is comparable to the interaction of the molecule with a train of pulses where the pulse separation is determined by the vibrational period.  相似文献   

9.
10.
Rapid motion capture of phase-controlled wave packets was realized using a sensitive wave-packet spectrometer, which was previously developed by the present authors. Two-dimensional Fourier-transformed spectrograms obtained by the wave-packet spectrometer provide us full information about the wave-packet motion on both excited- and ground-state potential surfaces. Vibrational wave packet associated with a twisting mode in a DTTCI molecule was observed to be dependent on the pulse chirp, and was generated in the excited state preferably with negatively chirped excitation. The result indicates that the excited-state wave packet can be driven along a favorable configuration coordinate by using phase-controlled femtosecond pulses. The present method is essential to adaptive coherent-control application.  相似文献   

11.
In this theoretical wave packet study, we demonstrate efficient strong field quantum control by Selective Population of Dressed States (SPODS) on K2 dimers. Shaped femtosecond pulses are used to switch population transfer among different final states with high selectivity and almost unit efficiency. The physical mechanism of this ultrafast molecular strong field control scenario is analyzed in analogy to the interpretation of recent experimental studies of SPODS on atoms. Criteria for the design of SPODS-pulses are presented along with experimental signatures for the observation of SPODS on molecules.  相似文献   

12.
Converged differential and integral cross sections are reported for the H + O2 --> OH + O reaction on an improved potential energy surface of HO2(X2A') using a dynamically exact quantum wave packet method and Gaussian weighted quasi-classical trajectory method. The complex-forming mechanism is confirmed by strong forward and backward scattering peaks and by highly inverted OH rotational state distributions. Both the quantum and classical results provide strong evidence for nonstatistical behavior in this important reaction.  相似文献   

13.
We numerically propose a way to perform quantum computations by combining an ensemble of molecular states and weak laser pulses. A logical input state is expressed as a superposition state (a wave packet) of molecular states, which is initially prepared by a designed femtosecond laser pulse. The free propagation of the wave packet for a specified time interval leads to the specified change in the relative phases among the molecular basis states, which corresponds to a computational result. The computational results are retrieved by means of quantum interferometry. Numerical tests are implemented in the vibrational states of the B state of I2 employing controlled-NOT gate, and 2 and 3 qubits Fourier transforms. All the steps involved in the computational scheme, i.e., the initial preparation, gate operation, and detection steps, are achieved with extremely high precision.  相似文献   

14.
Classical and semiclassical methods are developed to calculate and invert the wave packet motion measured in pump-probe experiments. With classical propagation of the Wigner distribution of the initial wave packet created by the pump pulse, we predict the approximate probe signal with slightly displaced recurrence peaks, and derive a set of first-order canonical perturbation expressions to relate the temporal features of the signal to the characteristics of the potential surface. A reduced dynamics scheme based on the Gaussian assumption leads to the correct center of mass motion but does not describe the evolution of the shape of the wave packet accurately. To incorporate the quantum interference into classical trajectories, we propose a final-value representation semiclassical method, specifically designed for the purpose of computing pump-probe signals, and demonstrate its efficiency and accuracy with a Morse oscillator and two kinetically coupled Morse oscillators. For the case of one-color pump probe, a simple phase-space quantization scheme is devised to reproduce the temporal profile at the left-turning point without actual wave packet propagation, revealing a quantum mechanical perspective of the nearly classical pump-probe signal.  相似文献   

15.
We experimentally investigate the nonadiabatic rotational excitation process of a symmetric-top molecule, benzene, in the electronic ground state irradiated by intense nonresonant ultrafast laser fields. The initial rotational-state distribution was restricted mostly to the five lowest levels with different nuclear spin modifications by an extensive adiabatic cooling with the rotational temperature well below 1 K, and distributions after the interaction with a femtosecond double-pulse pair (3-5 TW/cm(2) each with 160 fs duration) with time delays were probed in a quantum-state resolved manner by employing resonant enhanced multiphoton ionization via the S(1) ← S(0) 6(0) (1) vibronic transition. Populations of 10 rotational levels with J ranging from 0 to 4 and K from 0 to 3 were examined to show an oscillatory dependence on the time delay between the two pulses. Fourier analysis of the beat signals provides the coupling strengths between the constituent levels of the rotational wave packets created by the nonadiabatic excitation. These data are in good agreement with the results from quantum mechanical calculations, evidencing stepwise excitation pathways in the wave packet creation with ΔJ = 2 in the K = 0 stack while ΔJ = 1 and 2 in the K > 0 stacks.  相似文献   

16.
We present a complete perturbation theory of stimulated Raman scattering (SRS), which includes the new experimental technique of femtosecond stimulated Raman scattering (FSRS), where a picosecond Raman pump pulse and a femtosecond probe pulse simultaneously act on a stationary or nonstationary vibrational state. It is shown that eight terms in perturbation theory are required to account for SRS, with observation along the probe pulse direction, and they can be grouped into four nonlinear processes which are labeled as stimulated Raman scattering or inverse Raman scattering (IRS): SRS(I), SRS(II), IRS(I), and IRS(II). Previous FSRS theories have used only the SRS(I) process or only the "resonance Raman scattering" term in SRS(I). Each process can be represented by an overlap between a wave packet in the initial electronic state and a wave packet in the excited Raman electronic state. Calculations were performed with Gaussian Raman pump and probe pulses on displaced harmonic potentials to illustrate various features of FSRS, such as high time and frequency resolution; Raman gain for the Stokes line, Raman loss for the anti-Stokes line, and absence of the Rayleigh line in off-resonance FSRS from a stationary or decaying v=0 state; dispersive line shapes in resonance FSRS; and the possibility of observing vibrational wave packet motion with off-resonance FSRS.  相似文献   

17.
孙志刚  张东辉 《化学进展》2012,24(6):1153-1165
本文回顾了最近十几年利用量子波包方法研究气相分子反应散射动力学的工作进展,特别是在态-态分辨水平上的工作进展。比较详细地讨论了目前存在的利用量子波包方法计算态-态微分截面的几种方法。目前态-态分辨的波包动力学计算可以精确地预测三原子和四原子分子反应散射的各种信息,文章最后对几个典型的利用波包方法在态-态分辨水平上研究过的三原子和四原子反应散射体系做了讨论。  相似文献   

18.
In this study, an analysis of the one-dimensional Eckart and Gaussian barrier scattering problems is undertaken using approximate quantum trajectories. Individual quantum trajectories are computed using the derivative propagation method (DPM). Both real-valued and complex-valued DPM quantum trajectories are employed. Of interest are the deep tunneling and the higher energy barrier scattering problems in cases in which the scattering barrier is "thick" by comparison to the width of the initial wave packet. For higher energy scattering problems, it is found that real-valued DPM trajectories very accurately reproduce the transmitted probability densities at low orders when compared to large fixed-grid calculations. However, higher orders must be introduced to obtain good probabilities for deep tunneling problems. Complex-valued DPM is found to accurately reproduce transmitted probability densities at low order for both the deep tunneling and the higher energy scattering problems. Of particular note, complex-classical trajectories are found to very nearly give the exact result for the deep barrier tunneling scattering problem, and the complex DPM converges well at high orders for these thick barrier scattering problems. A variety of analyses are performed to elucidate the dynamics of complex-valued DPM trajectories. The complex-extended barrier potentials are examined in detail, including an analysis of the complex force. Of particular interest are initial conditions for complex-valued DPM trajectories known as isochrones. All trajectories launched from an isochrone arrive on the real axis on the transmitted side of the barrier at the same time. The computation and properties of isochrones as well as the behavior of the initial wave packet in the complex plane are also examined.  相似文献   

19.
We developed an experimental approach to study pure liquid water in the infrared and avoid thermal effects. This technique is based on libration induced stretching excitation of water molecules. A direct correspondence between frequencies within the libration and OH stretching bands is demonstrated. Energy diffusion is studied in pure liquid water by measuring wave packet dynamics of OH stretching vibrator with infrared femtosecond spectroscopy. Wave packet dynamics reveals ultrafast energy dynamics and reflects 130 fs intermolecular energy transfer between water vibrators. Energy diffusion is almost two orders of magnitude faster than self diffusion in water.  相似文献   

20.
One of the major obstacles in employing complex-valued trajectory methods for quantum barrier scattering calculations is the search for isochrones. In this study, complex-valued derivative propagation method trajectories in the arbitrary Lagrangian-Eulerian frame are employed to solve the complex Hamilton-Jacobi equation for quantum barrier scattering problems employing constant velocity trajectories moving along rectilinear paths whose initial points can be in the complex plane or even along the real axis. It is shown that this effectively removes the need for isochrones for barrier transmission problems. Model problems tested include the Eckart, Gaussian, and metastable quadratic+cubic potentials over a variety of wave packet energies. For comparison, the "exact" solution is computed from the time-dependent Schrodinger equation via pseudospectral methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号