首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An improved interaction potential has been devised for diatomic alkali halide molecules. This potential, in addition to similar attraction terms as in the Rittner potential, includes a new exponential for the short-range repulsion. The constant m in the exponential is seen to be well expressible in terms of the parameters of the Rittner potential. The new potential is also correlated with different properties, as for example, effective charges, effective radii, effective principal quantum numbers, etc., of the combining ions. Various spectroscopic constants, viz., the ionic dissociation energy Di, the vibrational–rotational coupling constant αe, the vibrational anharmonicity constant ωexe, as well as two second-order spectroscopic constants γe and βe have been calculated for this and for the Rittner potential. From comparisons between these two potentials, the new one has been observed better than the other.  相似文献   

2.
3.
An empirical relation for crystal binding energy in terms of the valence level splitting of the anion and the radius of the cation has been proposed. The results are much closer to the experimental values and comparable with those obtained by different methods. The anomalously high binding energy of fluorides has been discussed.  相似文献   

4.
This work presents new molecular models for alkali and halide ions in aqueous solution. The force fields were parameterized with respect to the reduced liquid solution density at 293.15 K and 1 bar, considering all possible ion combinations simultaneously. The experimental target data are reproduced with a high accuracy over a wide range of salinity. The ion models predict structural properties of electrolyte solutions well, such as pair correlation functions and hydration numbers. The force fields provide good predictions of the properties studied here in combination with different models for water.  相似文献   

5.
The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Hu?nenberger, J. Chem. Phys. 124, 224501 (2006); M. M. Reif and P. H. Hu?nenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li(+), Na(+), K(+), Rb(+), Cs(+)) and halide (F(-), Cl(-), Br(-), I(-)) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998); Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, ΔG(hyd)(?)[H(+)] = -1100, -1075 or -1050 kJ mol(-1), resulting in three sets L, M, and H for the SPC water model and three sets L(E), M(E), and H(E) for the SPC/E water model (alternative sets can easily be interpolated to intermediate ΔG(hyd)(?)[H(+)] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is also evaluated and found to be very limited. Ultimately, it is expected that comparison with other experimental ionic properties (e.g., derivative single-ion solvation properties, as well as data concerning ionic crystals, melts, solutions at finite concentrations, or nonaqueous solutions) will permit to validate one specific set and thus, the associated ΔG(hyd)(?)[H(+)] value (atomistic consistency assumption). Preliminary results (first-peak positions in the ion-water radial distribution functions, partial molar volumes of ionic salts in water, and structural properties of ionic crystals) support a value of ΔG(hyd)(?)[H(+)] close to -1100 kJ·mol(-1).  相似文献   

6.
7.
8.
We have used low energy inelastic neutron scattering spectroscopy to examine the tunnelling spectroscopy of the ammonium ion in the (NH4)0.02Rb(x)K(0.98-x)I system. The concentration of different species were varied as x increased, this was followed systematically and the first consistent assignment scheme for these features is given. Differences were also found for the relaxation rate of the spin temperature inversions that could be generated in these species. At a critical concentration--about x = 0.04 mole fraction--the relaxation rates of the species changed dramatically.  相似文献   

9.
10.
Repulsion and dispersion parameters for alkali–metal halide diatomic molecules were computed by ionic Rittner and truncated Rittner models with radial dependent repulsion terms. Experimental data on the bond energies, the equilibrium interionic distances, and the spectroscopic frequencies were employed for the purpose. The polarizabilities used were also computed from the experimental dipole moments of alkali–metal halides. The potential parameters obtained were compared with parameters from other sources and checked for consistency. The computed potential parameters of alkali–metal halide monomer molecules were used to predict the energetics and geometries for alkali–metal halide dimer molecules. The predicted values are in good agreement with experiment and other calculations indicating the consistency and reliability of the potential employed. Although the magnitude of repulsive and dispersive energy terms varies with potential functions employed, the difference between the two for a molecule is constant. The repulsive term is more sensitive than the attractive term. The uncertainty in the exponential repulsion results in an inaccurate representation of the attractive contribution. Introduction of the radial-dependent repulsion term changes the relative magnitudes of repulsive and dispersive parameters and hence the relative contribution to the total potential with monomers. But this has no significant effect on the energetics and geometries of the dimers.  相似文献   

11.
Alkali (Li(+), Na(+), K(+), Rb(+), and Cs(+)) and halide (F(-), Cl(-), Br(-), and I(-)) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models. Although it has been clearly demonstrated that truly accurate treatments of ions will require inclusion of nonadditivity and polarizability (particularly with the anions) and ultimately even a quantum mechanical treatment, our goal was to simply push the limits of the additive treatments to see if a balanced model could be created. The applied methodology is general and can be extended to other ions and to polarizable force-field models. Our starting point centered on observations from long simulations of biomolecules in salt solution with the AMBER force fields where salt crystals formed well below their solubility limit. The likely cause of the artifact in the AMBER parameters relates to the naive mixing of the Smith and Dang chloride parameters with AMBER-adapted Aqvist cation parameters. To provide a more appropriate balance, we reoptimized the parameters of the Lennard-Jones potential for the ions and specific choices of water models. To validate and optimize the parameters, we calculated hydration free energies of the solvated ions and also lattice energies (LE) and lattice constants (LC) of alkali halide salt crystals. This is the first effort that systematically scans across the Lennard-Jones space (well depth and radius) while balancing ion properties like LE and LC across all pair combinations of the alkali ions and halide ions. The optimization across the entire monovalent series avoids systematic deviations. The ion parameters developed, optimized, and characterized were targeted for use with some of the most commonly used rigid and nonpolarizable water models, specifically TIP3P, TIP4P EW, and SPC/E. In addition to well reproducing the solution and crystal properties, the new ion parameters well reproduce binding energies of the ions to water and the radii of the first hydration shells.  相似文献   

12.
G. T  th  E. Spohr  K. Heinzinger 《Chemical physics》1995,200(3):347-355
From extensive ab initio calculations on the interactions between mercury clusters and alkali and halide ions we have derived analytical pair-potential functions for the interaction between the ion and an extended mercury (111) surface. A novel correction scheme is proposed in order to reduce the shortcomings of cluster model. A preferred adsorption above the twofold bridge site was found for Li+ and Na+ and above the threefold hollow site for all other ions. The ab initio results have been fitted to analytical functions that can be used in computer simulations.  相似文献   

13.
A new conductance formula for the charged square-well model is compared with experimental data. By fitting one potential parameter (the height of the step) for each ion pair and the individual ionic conductivities at infinite dilution the available conductance data are described up to about 1 mol per litre.  相似文献   

14.
A polarizable potential function for the hydration of alkali and halide ions is developed on the basis of the recent SWM4-DP water model [Lamoureux, G.; MacKerell, A. D., Jr.; Roux, B. J. Chem. Phys. 2003, 119, 5185]. Induced polarization is incorporated using classical Drude oscillators that are treated as auxiliary dynamical degrees of freedom. The ions are represented as polarizable Lennard-Jones centers, whose parameters are optimized to reproduce the binding energies of gas-phase monohydrates and the hydration free energies in the bulk liquid. Systematic exploration of the parameters shows that the monohydrate binding energies can be consistent with a unique hydration free energy scale if the computed hydration free energies incorporate the contribution from the air/water interfacial electrostatic potential (-540 mV for SWM4-DP). The final model, which can satisfyingly reproduce both gas and bulk-phase properties, corresponds to an absolute scale in which the intrinsic hydration free energy of the proton is -247 kcal/mol.  相似文献   

15.
This paper gives two empirical correlations of formation Gibbs energies of gaseous clusters DeltaG(f)n as function of number of solvent molecules attached to the ion, n, and one correlation connecting the DeltaG(f)n for each individual cluster with the total DeltaG(o)hydr value. The experimental ratios of DeltaG(f)2/DeltaG(f)1 and DeltaG(f)3/DeltaG(f)1 for both alkali metal and halide ions are on average equal to 0.75 and 0.5, respectively. DeltaG(f)n values for n > or = 4 are correlated with n as DeltaG(f)n = [a/(n - 1)] DeltaG(f)1 + b DeltaG(f)1. For all available data on cluster energies and each individual cluster, the DeltaG(f)n's are straight-line functions of DeltaG(o)hydr. This well corresponds to another empirical rule stating that the Gibbs energies of transfer of ions between two solvents are often as well straight-line functions of DeltaG(o)(hydr) [J. Rais and T. Okada, J. Phys. Chem. A, 2000, 104, 7314]. Tentative models of the found behavior are proposed. A full data set of the gaseous cluster energies of formation based on inclusion of new, usually not used entries from the literature is provided.  相似文献   

16.
Main properties of 5,10,15,20-tetra(4-chlorophenyl)porphyrin in the acetonitrile-perchloric acid system were studied by the method of spectrophotometric titration at standard temperature. The protonation of nitrogen atoms of the tetrapyrrole macrocycle was shown to occur in two steps, through the formation of mono- and diprotonated forms. The corresponding ionization constants and concentration intervals were determined. The diprotonated form of porphyrin was shown to bind effectively iodide, bromide and chloride ions, the stability constants of the complexes of 1:1 and 1:2 composition were determined.  相似文献   

17.
Ion hydration at a solid surface ubiquitously exists in nature and plays important roles in many natural processes and technological applications. Aiming at obtaining a microscopic insight into the formation of such systems and interactions therein, we have investigated the hydration of alkali metal ions at a prototype surface-graphite (0001), using first-principles molecular dynamics simulations. At low water coverage, the alkali metal ions form two-dimensional hydration shells accommodating at most four (Li, Na) and three (K, Rb, Cs) waters in the first shell. These two-dimensional shells generally evolve into three-dimensional structures at higher water coverage, due to the competition between hydration and ion-surface interactions. Exceptionally K was found to reside at the graphite-water interface for water coverages up to bulk water limit, where it forms an "umbrellalike" surface hydration shell with an average water-ion-surface angle of 115 degrees . Interactions between the hydrated K and Na ions at the interface have also been studied. Water molecules seem to mediate an effective ion-ion interaction, which favors the aggregation of Na ions but prevents nucleation of K. These results agree with experimental observations in electron energy loss spectroscopy, desorption spectroscopy, and work function measurement. In addition, the sensitive dependence of charge transfer on dynamical structure evolution during the hydration process, implies the necessity to describe surface ion hydration from electronic structure calculations.  相似文献   

18.
The stabilities of alkali halide cluster ions [M(MX)n]+ (M ? Li, Na, K, Rb, Cs; X ? F, Cl, Br, I) have been studied by measuring the fragment ion yields following dissociation of the ions in the second field free region of a ZAB-2F mass spectrometer. Extractable cluster ions were observed for certain values of n. It was found that the stabilities of the neutral fragment species formed are also of importance in determining the fragmentation rates. Possible configurations of M and X in the stable ions are discussed.  相似文献   

19.
20.
The low-temperature resonance secondary radiation spectrum as well as the absorption and luminescence excitation spectra of NO2 impurity ions in cesium halides have been studied. The energy relaxation processes and NO2 equilibrium orientation and reorientation problems have also been discussed. It was shown that the systems under study were characterized by average Stokes' losses and strong lattice distortions, exemplified by the Generation of a number of low-frequency local and pseudolocal vibrations. The inhomogeneous broadening in CsCl-NO2 and CsI-NO2 spectra was extremely large for the simple molecular impurity systems, leading to the interesting peculiarities of energy relaxation processes. Unlike some alkali halide crystals with NaCl structure the impurity NO2 does not rotate in the lattices with CsCl structure. The NO2 equilibrium orientation in cesium halides was fixed: both the molecular axis and the axis perpendicular to the molecular plane were directed in (100) directions of the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号