首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The velocity distributions of the fragments produced by dissociative photoionization of C(70) have been measured at several photon energies in the extreme UV region, by using a flight-time resolved velocity map imaging (VMI) technique combined with a high-temperature molecular beam and synchrotron radiation. Average kinetic energy release was estimated for the six reaction steps of consecutive C(2) emission, starting from C(70)(2+) → C(68)(2+) + C(2) to C(60)(2+)→ C(58)(2+) + C(2). The total kinetic energy generated in each step shows a general tendency to increase with increasing hν, except for the first and fifth steps. This propensity reflects statistical redistributions of the excess energy in the transition states for the above fragmentation mechanism. Analysis based on the finite-heat-bath theory predicts the detectable minimum cluster sizes at the end of the C(2)-emission decay chain. They accord well with the minimum sizes of the observed ions, if the excess energy in the primary C(70)(2+) is assumed to be smaller by ~15 eV than the maximum available energy. The present VMI experiments reveal remarkably small kinetic energy release in the fifth step, in contradiction to theoretical predictions, which suggests involvement of other fragmentation mechanisms in the formation of C(60)(2+).  相似文献   

2.
C60(2-) and C70(2-) dianions have been produced by electrospray of the monoanions and subsequent electron pickup in a Na vapor cell. The dianions were stored in an electrostatic ring and their decay by electron emission was measured up to 1 s after injection. While C70(2-) ions are stable on this time scale, except for a small fraction of the ions which have been excited by gas collisions, most of the C60(2-) ions decay on a millisecond time scale, with a lifetime depending strongly on their internal temperature. The results can be modeled as decay by electron tunneling through a Coulomb barrier, mainly from thermally populated triplet states about 120 meV above a singlet ground state. At times longer than about 100 ms, the absorption of blackbody radiation plays an important role for the decay of initially cold ions. The tunneling rates obtained from the modeling, combined with WKB estimates of the barrier penetration, give a ground-state energy 200+/-30 meV above the energy of the monoanion plus a free electron and a ground-state lifetime of the order of 20 s.  相似文献   

3.
The reaction of ethynyl radical (C(2)H) with allene (C(3)H(4)) at room temperature is investigated using an improved synchrotron multiplexed photoionization mass spectrometer (MPIMS) coupled to tunable vacuum ultraviolet (VUV) synchrotron radiation from the Advanced Light Source at the Lawrence Berkeley National Laboratory (LBNL). The orthogonal-accelerated time-of-flight mass spectrometer (OA-TOF) compared to the magnetic sector mass spectrometer used in a previous investigation of the title reaction (Phys. Chem. Chem. Phys., 2007, 9, 4291) enables more sensitive and selective detection of low-yield isomeric products. The C(5)H(4) isomer with the lowest ionization energy, pentatetraene, is now identified as a product of the reaction. Pentatetraene is predicted to be formed based on recent ab initio/RRKM calculations (Phys. Chem. Chem. Phys., 2010, 12, 2606) on the C(5)H(5) potential energy surface. However, the computed branching fraction for pentatetraene is predicted to be five times higher than that for methyldiacetylene, whereas experimentally the branching fraction of pentatetraene is observed to be small compared to that of methyldiacetylene. Although H-atom assisted isomerization of the products can affect isomer distribution measurements, isomerization has a negligible effect in this case. The kinetic behavior of the several C(5)H(4) isomers is identical, as obtained by time-dependent photoionization spectra. Even for high allene concentrations (and hence higher H-atom concentrations) no decay of the pentatetraene fraction is observed, indicating that H-assisted isomerization of pentatetraene to methyldiacetylene does not account for the difference between the experimental data and the theoretical branching ratios.  相似文献   

4.
We investigated the dissociative ionization of formaldehyde (CH(2)O) and ethene (C(2)H(4)) produced from photolysis of 1,3-trimethylene oxide at 193 nm using a molecular-beam apparatus and vacuum-ultraviolet radiation from an undulator for direct ionization. The CH(2)O (C(2)H(4)) product suffers from severe dissociative ionization to HCO(+) (C(2)H(3) (+) and C(2)H(2) (+)) even though photoionization energy is as small as 9.8 eV. Branching ratios of fragmentation of CH(2)O and C(2)H(4) following ionization are revealed as a function of kinetic energy of products using ionizing photons from 9.8 to 14.8 eV. Except several exceptions, branching ratios of daughter ions increase with increasing photon energy but decrease with increasing kinetic energy. The title reaction produces CH(2)O and C(2)H(4) mostly on electronic ground states but a few likely on triplet states; C(2)H(4) (a(3)B(1u)) seems to have a yield greater than CH(2)O (a(3)A(2)). The distinct features observed at small kinetic energies of daughter ions are attributed to dissociative ionization of photoproducts CH(2)O (a(3)A(2)) and C(2)H(4) (a(3)B(1u)). The observation of triplet products indicates that intersystem crossing occurs prior to fragmentation of 1,3-trimethylene oxide.  相似文献   

5.
Van der Waals binding energies for the X-O(2) complexes (X=Xe, CH(3)I, C(3)H(6), C(6)H(12)) are determined by analysis of experimental velocity map imaging data for O((3)P(2)) atoms arising from UV-photodissociation of the complex [A. V. Baklanov et al., J. Chem. Phys. 126, 124316 (2007)]. Several dissociation pathways have been observed, we focus on the channel corresponding to prompt dissociation of X-O(2) into X+2O((3)P) fragments, which is present for complexes of O(2) with all partners X. Our method is based on analysis of the kinetic energy of all three photofragments, where the O atom kinetic energy was directly measured in the experiment and the kinetic energy of the X partner was calculated using momentum conservation, along with the measured angular anisotropy for O atom recoil. We exploit the fact that the clusters are all T-shaped or nearly T-shaped, which we also confirm by ab initio calculations, along with knowledge of the transition dipole governing radiative absorption by the complex. The effect of partitioning the kinetic energy between translation along the X-O(2) and O-O coordinates on the angular anisotropy of the O atom recoil direction is discussed. Van der Waals binding energies of 110±20 cm(-1), 280±20 cm(-1), 135±30 cm(-1), and 585±20 cm(-1) are determined for Xe-O(2), CH(3)I-O(2), C(3)H(6)-O(2), and C(6)H(12)-O(2) clusters, respectively.  相似文献   

6.
Following photodissociation of fluorobenzene (C6H5F) at 193 and 157 nm, we detected the products with fragmentation-translational spectroscopy by utilizing a tunable vacuum ultraviolet beam from a synchrotron for ionization. Between two primary dissociation channels observed upon irradiation at 193 (157) nm, the HF-elimination channel C6H5F --> HF + C6H4 dominates, with a branching ratio of 0.94+/-0.02 (0.61+/-0.05) and an average release of kinetic energy of 103 (108) kJ mol(-1); the H-elimination channel C6H5F --> H + C6H4F has a branching ratio of 0.06+/-0.02 (0.39+/-0.05) and an average release of kinetic energy of 18.6 (26.8) kJ mol(-1). Photofragments H, HF, C6H4, and C6H4F produced via the one-photon process have nearly isotropic angular distributions. Both the HF-elimination and the H-elimination channels likely proceed via the ground-state electronic surface following internal conversion of C6H5F; these channels exhibit small fractions of kinetic energy release from the available energy, indicating that the molecular fragments are highly internally excited. We also determined the ionization energy of C6H4F to be 8.6+/-0.2 eV.  相似文献   

7.
Collisions of fullerene ions (C(60) (+)) with helium and neon were carried out over a range of laboratory energies (3-20 keV) on a unique tandem time-of-flight (TOF/TOF) mass spectrometer equipped with a curved-field reflectron (CFR). The CFR enables focusing of product ions over a wide kinetic energy range. Thus, ions extracted from a laser desorption/ionization (LDI) source are not decelerated prior to collision, and collision energies in the laboratory frame are determined by the source extraction voltages. Comparison of product ion mass spectra obtained following collisions with inert gases show a time (and apparent mass) shift for product ions relative to those observed in spectra obtained by metastable dissociation (unimolecular decay), consistent with impulse collision models, in which interactions of helium with fullerene in the high energy range are primarily with a single carbon atom. In addition, within a narrow range of kinetic energies an additional peak corresponding to the capture of helium is observed for fragment ions C(50) (+), C(52) (+), C(54) (+), C(56) (+) and C(58) (+).  相似文献   

8.
The energetics and dynamics of unimolecular decompositions of C70+ and its noble gas endohedral cations, Ne@C70+ and Ar@C70+, have been studied using tandem mass spectrometry techniques. The high-resolution mass-analyzed ion kinetic energy (HR-MIKE) spectra for the unimolecular reactions of C70+, Ne@CC70+, and Ar@C70+ were recorded by scanning the electrostatic analyzer and using single-ion counting that was achieved by combination of an electron multiplier, amplifier/discriminator, and multichannel analyzer. These cations dissociate unimolecularly via loss of a C2 unit, and no endohedral atom is observed as fragment. The activation energies for C2 evaporation from Ne@C70+ and Ar@C70+ are lower than those for elimination of the endohedral noble gas atoms. The kinetic energy release distributions (KERDs) for the C2 evaporation have been measured and, by use of the finite heat bath theory (FHBT), the binding energies for the C2 emission have been deduced from the KERDs. The C2 evaporation energies increase in the order DeltaEvap(C70+) < DeltaEvap(Ne@C70+) < DeltaEvap(Ar@C70+), but no big difference in the cage binding was observed for C70+, Ne@C70+, and Ar@C70+, indicating incorporations of the Ne and Ar atoms into C70 contribute a little to the stability of C70 toward C2 loss, which is in good agreement with theoretical calculations but contrasts with the findings in their C60 analogues and in metallofullerenes that the decay energies of the filled fullerenes are much higher than those of the corresponding empty cages.  相似文献   

9.
10.
This paper presents the first observation of coincidental emission of photons, electrons and secondary ions from individual C(60) keV impacts. An increase in photon, electron and secondary ion yields is observed as a function of C(60) projectile energy. The effect of target structure/composition on photon and electron emissions at the nanometer level is shown for a CsI target. The time-resolved photon emission may be characterized by a fast component emission in the UV-Vis range with a short decay time, while the electron and secondary ion emission follow a Poisson distribution.  相似文献   

11.
Fe+ has been attached to buckminsterfullerene, C(60), and corannulene, C(20)H(10), in the gas phase, and the reactivities of C(60)Fe+ and C(20)H(10)Fe+ have been measured with several small inorganic and organic molecules in helium bath gas at 0.35 Torr using a selected-ion flow tube (SIFT) mass spectrometer. Comparisons with measured reactivities of the bare Fe+ ion indicate that the presence of C(60) and C(20)H(10) leads to enhancements in reactivity at room temperature of up to 5 orders of magnitude. Ligation was the only chemistry observed with D(2), N(2), CO(2), CH(4), C(2)H(2), C(2)H(4), SO(2), C(6)D(6), NH(3), H(2)O, and CO, but other channels were observed to compete with adduct formation in the reactions with N(2)O and O(2). The number of molecules sequentially ligated to the ion was different: up to five molecules of ligand added sequentially to Fe+, up to four molecules of ligand were observed to attach to C(60)Fe+, while only up to three molecules added to C(20)H(10)Fe+. C(60)+ and C(20)H(10)+ were observed to be unreactive toward the same ligands. The kinetic results show the influence of carbonaceous surfaces on metal ion reactivity and are interpreted in terms of the nature of the coordination of Fe+ to the carbonaceous surface. Catalytic effects of the carbonaceous surfaces were identified for the reactions with N(2)O and O(2).  相似文献   

12.
Excitation properties of the isolated C(60) and (C(60))(N) model clusters (N = 2, 3, 4, 6 and 13) are studied using an a priori parameterized and self-consistent Hamiltonian, the Complete Neglect of Differential Overlap considering the l azimuthal quantum number method. This method properly describes electron excitations of the isolated C(60) after the configuration interaction of singles (CIS) procedure, when those are compared with experimental data in n-hexane solution and in a molecular beam. Geometry models of (C(60))(N) clusters to model the effect of aggregation were obtained from the fullerene fcc crystal. Some peaks in the low energy edge of the absorption spectrum appear corresponding to clustering effects, as well as small increases of bandwidths in the strong bands at the UV region. An analysis of the theoretical absorption spectrum for dimer models has been carried out, taking into account the influence of the distance between fullerene centers. The density of states of CIS for fullerene clusters in the range from 2.0 to 6.5 eV shows the possibility of electron transitions as functions of the size of the clusters.  相似文献   

13.
Endohedral Cs@C60 molecules were formed by implanting low energy (E0 = 30-220 eV) Cs+ ions into C60 molecules adsorbed on gold. Both growth and etching experiments of the surface deposited C(60) layer provide clear evidence for a submonolayer coverage. The Cs+ penetration and Cs@C60 ejection stages are shown to be a combined, single collision event. Thermal desorption measurements did not reveal any Cs@C60 left on the surface following the Cs+ impact. The Cs@C60 formation/ejection event therefore constitutes a unique example of a pick-up scattering by endocomplex formation. Kinetic energy distributions (KEDs) of the outgoing Cs@C60+ were measured for two different Cs+ impact energies under field-free conditions. The most striking observation is the near independence of the KEDs on the Cs+ impact energy. Both KEDs peak around 1.2 eV with similar line shapes. A simple model for the formation/ejection/fragmentation dynamics of the endohedral complex is proposed. The model leads to a strong correlation between the vibrational and kinetic energy of the outgoing Cs@C60. The KEDs are calculated taking into account the competition between the various decay processes: fragmentation and delayed ionization of the neutral Cs@C60 emitted from the surface, fragmentation of the Cs@C60+ ion, and radiative cooling. It is concluded that the measured KEDs are heavily biased by the experimental breakdown function. Good agreement between experimental and calculated KEDs is obtained.  相似文献   

14.
Basin-hopping global optimization is used to find likely candidates for the lowest minima on the potential energy surface of (C(60))(n)X (X=Li(+),Na(+),K(+),Cl(-)) and (C(60))(n)YCl (Y=Li,Na,K) clusters with n相似文献   

15.
The radiative cooling of positively charged fullerene and endohedral fullerene fragments of C60, C70, C84, and La@C82 has been measured in a time-of-flight mass spectrometer. The radiative cooling is measured via its influence on the metastable decay. The emissivity extracted from the data is between 4x10(-4) and 13x10(-4). These values agree fairly well with the emissivity calculated from considering the low-energy tail of the surface plasmon. No major difference is found in the emission behavior of empty and endohedral fullerenes.  相似文献   

16.
The PM3, AM1, and MINDO3 semiemperical methods are used to calculate the the energy difference between C60ON and C60ON- and the bond dissociation energy necessary to cleave neutral and negatively charged (C60)2 dimers and epoxide dimers, (C60)2ON, to their respective monomers C60, and C60ON/2. The results show that the anions of the dimers are significantly more stable than neutral dimers. This result may explain the higher thermal stability of the observed ferromagnetic phase in photolyzed C60. which has been attributed to epoxide dimers and oligomers. It also provides an explanation for the origin of unpaired electron spin necessary for ferromagnetism.  相似文献   

17.
Production of the anions (negative ions) has been observed by femtosecond laser ablation (fsLA) of solid C(60) with a time-of-flight (TOF) mass spectrometer. In contrast to C(60)(+), production of C(60)(-) due to an electron capture is found very limited because of the small electron affinity of the C(60) molecule. Narrow TOF peaks of small carbon fragment anions C(n)(-) (n ≤ 23) suggest instantaneous production of the fragment anions through dissociative ionization of C(60). Production of the mono-hydrogenated carbon fragment anions C(n)H(-) has been observed and also the abrupt change in the yield of C(n)H(-) has been observed at n = 10, which is attributed to the structural change of the carbon fragments from a linear chain to a monocyclic ring. The results are found similar to those obtained for the carbon fragments produced by nanosecond laser ablation (nsLA) of solid C(60), which demonstrates that the thermalization in an ablation plasma washes away any difference in the nature of carbon fragments produced by fsLA and nsLA.  相似文献   

18.
The interaction between C60 molecules with a graphite (0001) surface has been investigated by means of molecular dynamics simulations. The initial energies of the C60 molecules are 90 and 270 eV, respectively. An empirical model potential suggested by Takai et al. is used to describe the interaction between carbon atoms in the C60 molecule and between the atoms forming the graphite substrate. The interaction between the C60 atoms and the graphite atoms is modeled by a suitable Lennard-Jones potential. The resilience of scattered C60 molecules is observed and its energy distribution is in reasonable agreement with available experimental data, showing no significant dependence of the rebounding translational energy on the incident kinetic energy. The energy partition in the collision has been analyzed in detail and a two-step collision model speculated in the experiments has been discussed based on the simulation results.  相似文献   

19.
The total number of possible retrosynthetic bisections of C(60) leads to nine different isometric C(30) fragments. These molecules include five chiral units, four of which derive from partitions corresponding to four distinct "Coupes du Roi". The energies, curvatures, and homodesmotic stabilization energies of the C(30) fragments are evaluated at the ab initio 6-31G level.  相似文献   

20.
Hot C(60) molecules under nanosecond laser excitation decay by a variety of fragmentation channels. An experimental search has been made to determine the excitation temperature of fragmented C(60)via analyzing the momentum distributions of the prompt ionic fragments C(n)(+) (n ≤ 58). It was found that all the C(60) precursors appearing as these ionic fragments have almost the same temperature and the temperature shows little variation with the laser fluences in our limited range. The results provide a clear evidence that a first-order phase transition in the fragmented C(60) is occurring at this temperature. The value of phase transition temperature is found to be about 6050 ± 250 K, which is in a good agreement with the most recent estimations based on the molecular dynamics simulation. This approach offers an experimental opportunity for studying the fragmentation thermodynamics of more complex polyatomic molecules under excitation temperature determined conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号