首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The integral cross section of the S((1)D(2)) + H(2)(j = 0) → SH + H reaction has been measured for the first time at collision energies from 0.820 down to 0.078 kJ mol(-1) in a high-resolution crossed beam experiment. The excitation function obtained exhibits a non-monotonic variation with collision energy and compares well with the results of high-level quantum calculations. In particular, the structures observed in the lower energy part, where only a few partial waves contribute, can be described in terms of the sequential opening of individual channels, consistent with the theoretical calculations.  相似文献   

3.
The three lowest (1A('), 2A('), and 1A(')) adiabatic potential energy surfaces (PESs) for the Br((2)P) + H(2) reactive system have been computed based on the multi-reference configuration interaction (MRCI) method including the Davidson's correction with a large basis set. These three adiabatic PESs have been transformed to a diabatic representation, leading to four coupling potentials. In addition, the spin-orbit matrix elements were also obtained using the Breit-Pauli Hamiltonian and the unperturbed MRCI wavefunctions in the Br + H(2) channel and the transition state region. Consequently, six coupling potentials were obtained and their characteristics were extensively discussed. Nonadiabatic quantum dynamics calculations for this system have been realized with these realistic diabatic potentials instead of previous semi-empirical diabatic potentials. Based on two-state model nonadiabatic calculations for the Br((2)P(3∕2), (2)P(1∕2)) + H(2) reaction, the Br((2)P(1∕2)) + H(2) reaction was found to show less reactivity than the Br((2)P(3∕2)) + H(2) reaction at collision energies beyond the threshold of the Br((2)P(3∕2)) + H(2) reaction. Our results are consistent with the previous studies on the XH(2) (X = F, Cl) system, which indicate that the adiabatically forbidden channel is dominant at low energies in the open-shell halogen atom plus H(2) reactions.  相似文献   

4.
A detailed investigation of the dynamics of the reactions of ground- and excited-state carbon atoms, C(3P) and C(1D), with acetylene is reported over a wide collision energy range (3.6-49.1 kJ mol-1) using the crossed molecular beam (CMB) scattering technique with electron ionization mass spectrometric detection and time-of-flight (TOF) analysis. We have exploited the capability of (a) generating continuous intense supersonic beams of C(3P, 1D), (b) crossing the two reactant beams at different intersection angles (45, 90, and 135 degrees ) to attain a wide range of collision energies, and (c) tuning the energy of the ionizing electrons to low values (soft ionization) to suppress interferences from dissociative ionization processes. From angular and TOF distribution measurements of products at m/z=37 and 36, the primary reaction products of the C(3P) and C(1D) reactions with C2H2 have been identified to be cyclic (c)-C3H + H, linear (l)-C3H + H, and C3 + H2. From the data analysis, product angular and translational energy distributions in the center-of-mass (CM) system for both the linear and cyclic C3H isomers as well as the C3 product from C(3P) and for l/c-C3H and C3 from C(1D) have been derived as a function of collision energy from 3.6 to 49.1 kJ mol-1. The cyclic/linear C3H ratio and the C3/(C3 + c/l-C3H) branching ratios for the C(3P) reaction have been determined as a function of collision energy. The present findings have been compared with those from previous CMB studies using pulsed beams; here, a marked contrast is noted in the CM angular distributions for both C3H- and C3-forming channels from C(3P) and their trend with collision energy. Consequently, the interpretation of the reaction dynamics derived in the present work contradicts that previously proposed from the pulsed CMB studies. The results have been discussed in the light of the available theoretical information on the relevant triplet and singlet C3H2 ab initio potential energy surfaces (PESs). In particular, the branching ratios for the C(3P) + C2H2 reaction have been compared with the available theoretical predictions (approximate quantum scattering calculations and quasiclassical trajectory calculations on ab initio triplet PESs and, very recent, statistical calculations on ab initio triplet PESs as well as on ab initio triplet/singlet PESs including nonadiabatic effects, that is, intersystem crossing). While the experimental branching ratios have been corroborated by the statistical predictions, strong disagreement has been found with the results of the dynamical calculations. The astrophysical implications of the present results have been noted.  相似文献   

5.
Isotope exchange in low pressure cold plasmas of H(2)/D(2) mixtures has been investigated by means of mass spectrometric measurements of neutrals and ions, and kinetic model calculations. The measurements, which include also electron temperatures and densities, were performed in a stainless steel hollow cathode reactor for three discharge pressures: 1, 2 and 8 Pa, and for mixture compositions ranging from 100% H(2) to 100% D(2). The data are analyzed in the light of the model calculations, which are in good global agreement with the experiments. Isotope selective effects are found both in the surface recombination and in the gas-phase ionic chemistry. The dissociation of the fuel gas molecules is followed by wall recycling, which regenerates H(2) and D(2) and produces HD. Atomic recombination at the wall is found to proceed through an Eley-Rideal mechanism, with a preference for reaction of the adsorbed atoms with gas phase D atoms. The best fit probabilities for Eley-Rideal abstraction with H and D are: γ(ER H) = 1.5 × 10(-3), γ(ER D) = 2.0 × 10(-3). Concerning ions, at 1 Pa the diatomic species H(2)(+), D(2)(+) and HD(+), formed directly by electron impact, prevail in the distributions, and at 8 Pa, the triatomic ions H(3)(+), H(2)D(+), HD(2)(+) and D(3)(+), produced primarily in reactions of diatomic ions with molecules, dominate the plasma composition. In this higher pressure regime, the formation of the mixed ions H(2)D(+) and HD(2)(+) is favoured in comparison with that of H(3)(+) and D(3)(+), as expected on statistical grounds. The model results predict a very small preference, undetectable within the precision of the measurements, for the generation of triatomic ions with a higher degree of deuteration, which is probably a residual influence at room temperature of the marked zero point energy effects (ZPE), relevant for deuterium fractionation in interstellar space. In contrast, ZPE effects are found to be decisive for the observed distribution of monoatomic ions H(+) and D(+), even at room temperature. The final H(+)/D(+) ratio is determined to a great extent by proton (and deuteron) exchange, which favours the enhancement of H(+) and the concomitant decrease of D(+).  相似文献   

6.
The reactive collision process H(+) + D(2)(ν = 0, j = 0) → HD + D(+) is theoretically analyzed for collision energies ranging from threshold up to 1.3 eV. It is assumed that the reaction takes place via formation of a collision complex. In calculations, a statistical theory is used, based on a mean isotropic potential deduced from a full potential energy surface. Calculated integral cross sections, opacity functions, and rotational distributions of the HD products are compared with recent statistical and quantum mechanical calculations performed using a full potential energy surface. Satisfactory agreement between the results obtained using the two statistical methods is found, both of which however overestimate the existing quantum mechanical predictions. The effects due to the presence of identical particles are also discussed.  相似文献   

7.
Bridgehead C-H bond dissociation enthalpies of 105.7 ± 2.0, 102.9 ± 1.7, and 102.4 ± 1.9 kcal mol(-1) for bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, and adamantane, respectively, were determined in the gas phase by making use of a thermodynamic cycle (i.e., BDE(R-H) = ΔH°(acid)(H-X) - IE(H(·)) + EA(X(·))). These results are in good accord with high-level G3 theory calculations, and the experimental values along with G3 predictions for bicyclo[1.1.1]pentane, bicyclo[2.1.1]hexane, bicyclo[3.1.1]heptane, and bicyclo[4.2.1]nonane were found to correlate with the flexibility of the ring system. Rare examples of alkyl anions in the gas phase are also provided.  相似文献   

8.
Heats of formation, entropies, Gibbs free energies, relative tautomerisation energies, tautomeric equilibrium constants, dipole moments, and ionization potentials for the eight possible tautomers of hypoxanthine have been studied using semiempirical AM1 and PM3 quantum-chemical calculations at the SCF level in the gas and aqueous phases, with full geometry optimization. The COSMO solvation model was employed for aqueous solution calculations. The calculations show that the two keto tautomers H17 and H19 are the predominant species at room temperature in the gas and aqueous phase. However, the tautomer H17 is the more dominant species in gas phase, while the H19 tautomer is the more dominant species in the aqueous phase. Comparison with available experimental data provides support for the results derived from theoretical computations. The entropy effect on the Gibbs free energy of hypoxanthine is very small and there is little significance for the tautomeric equilibria of the base. The enthalpic term is dominant in the determination of the equilibrium constant.  相似文献   

9.
Recently, it has been well recognized that the modulation of electrostatic interactions due to surface charges can induce transitions between lamellar liquid-crystalline (L(α)) and inverse bicontinuous double-diamond cubic (Q(II)(D)) phases in biological lipids. To reveal their kinetic pathway and mechanism, we investigated the low pH-induced L(α) to Q(II)(D) phase transitions in 20%-dioleoylphosphatidylserine (DOPS)/80%-monoolein (MO) using time-resolved small-angle x-ray scattering and a rapid mixing method. At a final pH of 2.6-2.9, the L(α) phase was transformed completely into the hexagonal II (H(II)) phase within 2-10 s after mixing a low pH buffer with a suspension of multilamellar vesicles of 20%-DOPS∕80%-MO (the initial step). Subsequently, the H(II) phase slowly converted into the Q(II)(D) phase and completely disappeared within 15-30 min (the second step). The rate constants of the second step were obtained using the singular value decomposition analysis. On the basis of these data, we discuss the underlying mechanism of the kinetic pathway of the low pH-induced L(α) to Q(II)(D) phase transitions.  相似文献   

10.
Adiabatic (1A' or 1A' state) and non-adiabatic (2A'/1A' states) quantum dynamics calculations have been carried out for the title reaction (O((1)D) + D(2) → OD + D) to obtain the initial state-specified (v(i) = 0, j(i) = 0) integral cross section and rate constant using the potential energy surfaces of Dobbyn and Knowles. A total of 50 partial wave contributions have been calculated using the Chebyshev wave packet method with full Coriolis coupling to achieve convergence up to the collision energy of 0.28 eV. The total integral cross section and rate constant are in excellent agreement with experimental as well as quasi-classical trajectory results. Contributions from the adiabatic pathway of the 1A' state and the non-adiabatic pathway of the 2A'/1A' states, increase significantly with the collision energy. Compared to the O((1)D) + H(2) system, the kinetic isotope effect (k(D)/k(H)) is found to be nearly temperature independent above 100 K and its value of 0.77 ± 0.01 shows excellent agreement with the experimental result of 0.81.  相似文献   

11.
Integral cross sections for collisions of rotationally hot H2S molecules with rare gas atoms (Ne, Ar, and Kr) have been measured, in the collision energy range of 10-60 kJ mol(-1), using a molecular beam apparatus operating under high resolution both in angle and in velocity. A well resolved glory pattern has been measured which permitted the accurate characterization of the intermolecular potentials both at long range (in the attractive region) and at intermediate distances (in the well region). Considering the conditions used in the experiments, the obtained potentials must be considered very close to the spherical averages of the full intermolecular potential energy surfaces. Extensive ab initio calculations have also been carried out in parallel in order to characterize energy minima in the potential energy surfaces and energy barriers associated to the motion of the rare gas atoms around H2S. An assessment of the relative role of the various interaction components has been also attempted: the combined analysis of experimental and theoretical results suggests that H2S-rare gas aggregates are mainly bound by nearly isotropic noncovalent interactions of the van der Waals type.  相似文献   

12.
A simple computational approach for predicting ground-state reduction potentials based upon gas phase geometry optimizations at a moderate level of density functional theory followed by single-point energy calculations at higher levels of theory in the gas phase or with polarizable continuum solvent models is described. Energies of the gas phase optimized geometries of the S0 and one-electron-reduced D0 states of 35 planar aromatic organic molecules spanning three distinct families of organic photooxidants are computed in the gas phase as well as well in implicit solvent with IPCM and CPCM solvent models. Correlation of the D0 - S0 energy difference (essentially an electron affinity) with experimental reduction potentials from the literature (in acetonitrile vs SCE) within a single family, or across families when solvent models are used, yield correlations with r(2) values in excess of 0.97 and residuals of about 100 mV or less, without resorting to computationally expensive vibrational calculations or thermodynamic cycles.  相似文献   

13.
Dipole polarizabilities of a series of ions in aqueous solutions are computed from first-principles. The procedure is based on the study of the linear response of the maximally localized Wannier functions to an applied external field, within density functional theory. For most monoatomic cations (Li(+), Na(+), K(+), Rb(+), Mg(2+), Ca(2+) and Sr(2+)) the computed polarizabilities are the same as in the gas phase. For Cs(+) and a series of anions (F(-), Cl(-), Br(-) and I(-)), environmental effects are observed, which reduce the polarizabilities in aqueous solutions with respect to their gas phase values. The polarizabilities of H((aq)) (+), OH((aq)) (-) have also been determined along an ab initio molecular dynamics simulation. We observe that the polarizability of a molecule instantaneously switches upon proton transfer events. Finally, we also computed the polarizability tensor in the case of a strongly anisotropic molecular ion, UO(2) (2+). The results of these calculations will be useful in building interaction potentials that include polarization effects.  相似文献   

14.
On the basis of experimental evidence and DFT calculations, we propose a simple yet viable way to stabilize and chemically activate gold nanoclusters on MgO. First the MgO surface is functionalized by creation of trapped electrons, (H (+))(e (-)) centers (exposure to atomic H or to H 2 under UV light, deposition of low amounts of alkali metals on partially hydroxylated surfaces, etc.); the second step consists in the self-aggregation of gold clusters deposited from the gas phase. The calculations show that the (H (+))(e (-)) centers act both as nucleation and activation sites. The process can lead to thermally stable gold cluster anions whose catalytic activity is enhanced by the presence of an excess electron.  相似文献   

15.
The gas phase reactions of CH3O2 + CH3O2, HO2 + HO2, and CH3O2 + HO2 in the presence of water vapor have been studied at temperatures between 263 and 303 K using laser flash photolysis coupled with UV time-resolved absorption detection at 220 and 260 nm. Water vapor concentrations were quantified using tunable diode laser spectroscopy operating in the mid-IR. The HO2 self-reaction rate constant is significantly enhanced by water vapor, consistent with what others have reported, whereas the CH3O2 self-reaction and the cross-reaction (CH3O2 + HO2) rate constants are nearly unaffected. The enhancement in the HO2 self-reaction rate coefficient occurs because of the formation of a strongly bound (6.9 kcal mol(-1)) HO2 x H2O complex during the reaction mechanism where the H2O acts as an energy chaperone. The nominal impact of water vapor on the CH3O2 self-reaction rate coefficient is consistent with recent high level ab initio calculations that predict a weakly bound CH3O2 x H2O complex (2.3 kcal mol(-1)). The smaller binding energy of the CH3O2 x H2O complex does not favor its formation and consequent participation in the methyl peroxy self-reaction mechanism.  相似文献   

16.
Time-resolved kinetic studies of the reaction of dideutero-silylene, SiD 2, generated by laser flash photolysis of phenylsilane-d 3, have been carried out to obtain rate constants for its bimolecular reaction with C 2H 2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF 6 bath gas, at five temperatures in the range 297-600 K. The second-order rate constants obtained by extrapolation to the high-pressure limits at each temperature fitted the Arrhenius equation log( k (infinity)/cm (3) molecule (-1) s (-1)) = (-10.05 +/- 0.05) + (3.43 +/- 0.36 kJ mol (-1))/ RT ln 10. The rate constants were used to obtain a comprehensive set of isotope effects by comparison with earlier obtained rate constants for the reactions of SiH 2 with C 2H 2 and C 2D 2. Additionally, pressure-dependent rate constants for the reaction of SiH 2 with C 2H 2 in the presence of He (1-100 Torr) were obtained at 300, 399, and 613 K. Quantum chemical (ab initio) calculations of the SiC 2H 4 reaction system at the G3 level support the initial formation of silirene, which rapidly isomerizes to ethynylsilane as the major pathway. Reversible formation of vinylsilylene is also an important process. The calculations also indicate the involvement of several other intermediates, not previously suggested in the mechanism. RRKM calculations are in semiquantitative agreement with the pressure dependences and isotope effects suggested by the ab initio calculations, but residual discrepancies suggest the possible involvement of the minor reaction channel, SiH 2 + C 2H 2 --> Si( (3)P 1) + C 2H 4. The results are compared and contrasted with previous studies of this reaction system.  相似文献   

17.
An osmium complex, [OsII(bpy)2(4-aminomethylpyridine)(H2O)]2+, is attached to a mixed self-assembled monolayer on a gold electrode. The complex exhibits 1-electron, 1-proton redox chemistry (OsIII(OH)/OsII(H2O)) at pHs and potentials that are experimentally accessible with gold electrodes in aqueous electrolytes. The thermodynamic behavior and kinetic behavior of the system are investigated as a function of pH in both H2O and D2O. The two formal potentials and two pKa values are relatively constant for two chain lengths in H2O and in D2O. The standard rate constants at all pHs are strongly and uniformly affected by chain length, indicating that electronic coupling is the dominant factor controlling the rate of electron transfer. In both H2O and D2O, the standard rate constant is weakly dependent on the pH, exhibiting a minimum value midway between the pKa values. The kinetic isotope effect is small; standard rate constants decrease by roughly a factor of 2 in D2O over a wide range of pHs, but not at the more acidic pHs. The Tafel plots and plots of the transfer coefficient vs overpotential are asymmetrical at all pHs. These results are interpreted in terms of a larger reorganization energy for the OsII species and a smaller reorganization energy for the OsIII species. The OsIII reorganization energy is constant at all pHs in both H2O and D2O. The pH dependence of the OsII reorganization energy accounts for some or all of the pH dependence of the standard rate constant in H2O and D2O. The data deviate substantially from predictions of the stepwise proton-coupled electron-transfer mechanism. The observation of a kinetic isotope effect supports the concerted mechanism.  相似文献   

18.
Gold(I), silver(I), and copper(I) phosphine complexes of 6,9,12,15,18-pentaaryl[60]fullerides 1a and 1b, namely, [(4-MeC(6)H(4))(5)C(60)]Au(PPh(3)) (2a), [(4-t-BuC(6)H(4))(5)C(60)]Au(PPh(3)) (2b), [(4-MeC(6)H(4))(5)C(60)]Ag(PCy(3)) (3a), [(4-t-BuC(6)H(4))(5)C(60)]Ag(PPh(3)) (3b), [(4-t-BuC(6)H(4))(5)C(60)]Ag(PCy(3)) (3c), [(4-MeC(6)H(4))(5)C(60)]Cu(PPh(3)) (4a), and [(4-t-BuC(6)H(4))(5)C(60)]Cu(PPh(3)) (4b), have been synthesized and characterized spectroscopically. All complexes except for 3c were also characterized by single-crystal X-ray diffraction. Several coordination modes between the cyclopentadienyl ring embedded in the fullerene and the metal centers are observed, ranging from η(1) with a slight distortion toward η(3) in the case of gold(I), to η(2)/η(3) for silver(I), and η(5) for copper(I). Silver complexes 3a and 3b are rare examples of crystallographically characterized Ag(I) cyclopentadienyls whose preparation was possible thanks to the steric shielding provided by fullerides 1a and 1b, which stabilizes these complexes. Silver complexes 3a and 3b both display unexpected coordination of the cyclopentadienyl portion of the fulleride anion with Ag(I). DFT calculations on the model systems (H(5)C(60))M(PH(3)) and CpMPH(3) (M = Au, Ag, or Cu) were carried out to probe the geometries and electronic structures of these metal complexes.  相似文献   

19.
The radiative lifetime of phosphorescence of free-base porphin (H2P) molecule and its complexes with noble-gas atoms are calculated by time-dependent density functions theory (TD DFT) with quadratic response functions for account of spin-orbit coupling and electric dipole activity. The complexes with Ne, Ar, Kr, and Xe are used to simulate the external heavy atom (EHA) effect on phosphorescence of the H2P molecule in the corresponding noble gas matrices. The B3LYP functional and small basis set (3-21G) are used throughout the study and comparison of all complexes but other basis sets are also utilized to support the chosen approach. A slow radiative rate constant of free-base porphin phosphorescence (about 10(-3) s(-1)) is obtained with all basis sets being in the order of magnitude agreement with experimental estimations. A strong enhancement of the H2P phosphorescence rate (by 360 times) is calculated for Xe complex; while for Ne, Ar, and Kr complexes, the enhancement is equal to 1.1, 1.3, and 10.3 times, respectively. In these complexes, the noble gas atom is disposed at 3.6 A above the center of the porphin ring. In spite of shortcomings of the chosen simple model, the TD DFT calculations explain the most important features of the EHA effect on phosphorescence of free-base porphin. Calculations of the hyperfine coupling tensors for all magnetic nuclei in the lowest triplet state of H2P molecule and its complexes with noble-gas atoms indicate an appreciable penetration of the spin density to the EHA region. This can be connected with the enhancement of spin-orbit coupling in the H2P molecule.  相似文献   

20.
The interstellar reaction of ground-state carbon atom with the simplest polyyne, diacetylene (HCCCCH), is investigated theoretically to explore probable routes to form hydrogen-deficient carbon clusters at ultralow temperature in cold molecular clouds. The isomerization and dissociation channels for each of the three collision complexes are characterized by utilizing the unrestricted B3LYP/6-311G(d,p) level of theory and the CCSD(T)/cc-pVTZ calculations. With facilitation of RRKM and variational RRKM rate constants at collision energies of 0-10 kcalmol, the most probable paths, thus reaction mechanism, are determined. Subsequently, the corresponding rate equations are solved that the evolutions of concentrations of collision complexes, intermediates, and products versus time are obtained. As a result, the final products and yields are identified. This study predicts that three collision complexes, c1, c2, and c3, would produce a single final product, 2,4-pentadiynylidyne, HCCCCC(X (2)Pi), C(5)H (p1)+H, via the most stable intermediate, carbon chain HC(5)H (i4). Our investigation indicates the title reaction is efficient to form astronomically observed 2,4-pentadiynylidyne in cold molecular clouds, where a typical translational temperature is 10 K, via a single bimolecular gas phase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号