首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism and spectral dependence of the quantum yield of singlet oxygen O(2)(a (1)Δ(g)) photogenerated by UV radiation in gaseous oxygen at elevated pressure (32-130 bar) have been experimentally investigated within the 238-285 nm spectral region overlapping the range of the Wulf bands in the absorption spectrum of oxygen. The dominant channel of singlet oxygen generation with measured quantum yield up to about 2 is attributed to the one-quantum absorption by the encounter complexes O(2)-O(2). This absorption gives rise to oxygen in the Herzberg III state O(2)(A' (3)Δ(u)), which is assumed to be responsible for singlet oxygen production in the relaxation process O(2)(A' (3)Δ(u), υ) + O(2)(X (3)Σ(g)(-)) → O(2)({a (1)Δ(g)}, {b (1)Σ(g)(+)}) + O(2)({a (1)Δ(g), υ = 0}, {b (1)Σ(g)(+), υ = 0}) with further collisional relaxation of b to a state. This mechanism is deduced from the analysis of the avoiding crossing locations on the potential energy surface of colliding O(2)-O(2) pair. The observed drop of the O(2)(a (1)Δ(g)) yield near spectral threshold for O(2) dissociation is explained by the competition between above relaxation and reaction giving rise to O(3) + O (O + O + O(2)) supposed in literature. The quantum yield of O(2)(a (1)Δ(g)) formation from encounter complex N(2)-O(2) measured at λ = 266 nm was found to be the same as that for O(2)-O(2).  相似文献   

2.
The electronic structure and photochemistry of the O(2n)(-)(H(2)O)(m), n = 1-6, m = 0-1 cluster anions is investigated at 532 nm using photoelectron imaging and photofragment mass-spectroscopy. The results indicate that both pure oxygen clusters and their hydrated counterparts with n ≥ 2 form an O(4)(-) core. Fragmentation of these clusters yields predominantly O(2)(-) and O(2)(-)·H(2)O anionic products, with the addition of O(4)(-) fragments for larger parent clusters. The fragment autodetachment patterns observed for O(6)(-) and larger O(2n)(-) species, as well as some of their hydrated counterparts, indicate that the corresponding O(2)(-) fragments are formed in excited vibrational states (v ≥ 4). Yet, surprisingly, the unsolvated O(4)(-) anion itself does not show fragment autodetachment at 532 nm. It is hypothesized that the vibrationally excited O(2)(-) is formed in the intra-cluster photodissociation of the O(4)(-) core anion via a charge-hopping electronic relaxation mechanism mediated by asymmetric solvation of the nascent photofragments: O(4)(-) → O(2)(-)(X(2)Π(g)) + O(2)(a(1)Δ(g)) → O(2)(X(3)Σ(g)(-)) + O(2)(-)(X(2)Π(g)). This process depends on the presence of solvent molecules and leads to vibrationally excited O(2)(-)(X(2)Π(g)) products.  相似文献   

3.
Quantum chemical calculations are carried out to study the reaction of ethane with molecular oxygen in the ground triplet and singlet delta states. Transition states, intermediates, and possible products of the reaction on the triplet and singlet potential energy surfaces are identified on the basis of the coupled-cluster method. The basis set dependence of coupled-cluster energy values is estimated by the second-order perturbation theory. The values of energy barriers are also refined by using the compound CBS-Q and G3 techniques. It was found that the C(2)H(6) + O(2)(X(3)Σ(g)(-)) reaction leads to the formation of C(2)H(5) and HO(2) products, whereas the C(2)H(6) + O(2)(a(1)Δ(g)) process produces C(2)H(4) and H(2)O(2) molecules. The appropriate rate constants of these reaction paths are estimated on the basis of variational and nonvariational transition-state theories assuming tunneling and possible nonadiabatic transitions in the temperature range 500-4000 K. The calculations showed that the rate constant of the C(2)H(6) + O(2)(a(1)Δ(g)) reaction path is much greater than that of the C(2)H(6) + O(2)(X(3)Σ(g)(-)) one. At the same time, the singlet and triplet potential surface intersection is detected that leads to the appearance of the nonadiabatic quenching channel O(2)(a(1)Δ(g)) + C(2)H(6) → O(2)(X (3)Σ(g)(-)) + C(2)H(6). The rate constant of this process is estimated with the use of the Landau-Zener model. It is demonstrated that, in the case of the existence of thermal equilibrium in the distribution of molecules over the electronic states, at low temperatures (T < 1200 K) the main products of the reaction of C(2)H(6) with O(2) are C(2)H(4) and H(2)O(2), rather than C(2)H(5) and HO(2). At higher temperature (T > 1200 K) the situation is inverted.  相似文献   

4.
The effect of a local environment on the photodissociation of molecular oxygen is investigated in the van der Waals complex X-O(2) (X=CH(3)I, C(3)H(6), C(6)H(12), and Xe). A single laser operating at wavelengths around 226 nm is used for both photodissociation of the van der Waals complex and simultaneous detection of the O((3)P(J),J=2,1,0) atom photoproduct via (2+1) resonance enhanced multiphoton ionization. The kinetic energy distribution (KED) and angular anisotropy of the product O atom recoil in this dissociation are measured using the velocity map imaging technique configured for either full ("crush") or partial ("slice") detection of the three-dimensional O((3)P(J)) atom product Newton sphere. The measured KED and angular anisotropy reveal a distinct difference in the mechanism of O atom generation from an X-O(2) complex compared to a free O(2) molecule. The authors identify two one-photon excitation pathways, the relative importance of which depends on IPx, the ionization potential of the X partner. One pathway, observed for all complexes independent of IPx, involves a direct transition to the perturbed covalent state X-O(2)(A'(3)Delta(u)) with excitation localized on the O(2) subunit. The predominantly perpendicular character of this channel relative to the laser polarization detection, together with data on the structure of the complex, allows us to confirm that X partner induced admixing of an X(+)-O(2) (-) charge transfer (CT) state is the perturbing factor resulting in the well-known enhancement of photoabsorption within the Herzberg continuum of molecular oxygen. The second excitation pathway, observed for X-O(2) complexes with X=CH(3)I and C(3)H(6), involves direct excitation into the (3)(X(+)-O(2) (-)) CT state of the complex. The subsequent photodissociation of this CT state by the same laser pulse gives rise to the superoxide anion O(2) (-), which then photodissociates, providing fast (0.69 eV) O atoms with a parallel image pattern. Products from the photodissociation of singlet oxygen O(2)(b (1)Sigma(g) (+)) are also observed when the CH(3)I-O(2) complex was irradiated. Potential energy surfaces (PES) for the ground and relevant excited states of the X-O(2) complex have been constructed for CH(3)I-O(2) using the results of CASSCF calculations for the ground and CT states of the complex as well as literature data on PES of the subunits. These model potential energy surfaces allowed us to interpret all of the observed O((3)P(J)) atom production channels.  相似文献   

5.
A cyclic voltammogram of aqueous 0.1 mol dm(-3) triflic acid solutions of the d6 bioxo-capped M-M bonded cluster [Mo3(mu3-O)2(O2CCH3)6(H2O)3]2+ at a glassy carbon electrode at 25 degrees C gives rise to an irreversible 3e- cathodic wave to a d9 Mo(III)3 species at -0.8 V vs. SCE which on the return scan gives rise to two anodic waves at +0.05 V vs. SCE (E(1/2), 1e- reversible to d8 Mo(III)2Mo(IV)) and +0.48 V vs. SCE (2e- irreversible back to d6 Mo(IV)3). The number of electrons passed at each redox wave has been confirmed by redox titration and controlled potential electrolysis which resulted in 90% recovery of [Mo3(mu3-O)2(O2CCH3)6(H2O)3]2+ following electrochemical re-oxidation at +0.8 V. A corresponding CV study of the d8 monoxo-capped W(III)2W(IV) cluster [W3(mu3-O)(O2CCH3)6(H2O)3]2+ gives rise to a reversible 1e- cathodic process at -0.92 V vs. SCE to give the d9 W(III)3 species [W3(mu3-O)(O2CCH3)6(H2O)3]+; the first authentic example of a W(III) complex with coordinated water ligands. However the cluster is too unstable (O2/water sensitive) to allow isolation. Comparisons with the cv study on [Mo3(mu3-O)2(O2CCH3)6(H2O)3]2+ suggest irreversible reduction of this complex to monoxo-capped [Mo(III)3(mu3-O)(O2CCH3)6(H2O)3]+ followed by reversible oxidation to its d8 counterpart [Mo3(mu3-O)(O2CCH3)6(H2O)3]2+ (Mo(III)2Mo(IV)) and finally irreversible oxidation back to the starting bioxo-capped cluster. Exposing the d9 Mo(III)3 cluster to air (O2) however gives a different final product with evidence of break up of the acetate bridged framework. Corresponding redox processes on d6 [W3(mu3-O)2(O2CCH3)6(H2O)3]2+ are too cathodic to allow similar generation of the monoxo-capped W(III)3 and W(III)2W(IV) clusters at the electrode surface.  相似文献   

6.
Synthetic procedures are described that allow access to the [V(3)O(O(2)CR)(6)L(3)](ClO(4)) (R = various groups; L = pyridine (py), 4-picoline (pic) or 3,5-lutidine (lut)) family of complexes. Treatment of VCl(3)(THF)(3) with NaO(2)CR (R = Me, Et) in RCO(2)H/py, pic/MeCN, or CH(2)Cl(2) solution followed by addition of NBu(n)(4)ClO(4) leads to isolation of [V(3)O(O(2)CR)(6)L(3)](ClO(4)) salts in 47-95% yields. A similar procedure for R = C(6)H(5), C(6)H(4)-p-OMe, C(6)H(3)-m-Me(2), and C(6)H(4)-p-Cl but omitting addition of NaO(2)CR provides the corresponding benzoate or substituted-benzoate derivatives in 24-56% yields. The X-ray structure of [V(3)O(O(2)CEt)(6)(pic)(3)](ClO(4)) (4) shows the anion to consist of a [V(3)O](7+) triangular fragment with a &mgr;(3)-O(2)(-) ion in the V(3) plane; each triangular edge is bridged by two EtCO(2)(-) groups in their familiar syn,syn modes, and there is a terminal pic group on each V(III) completing distorted octahedral geometries at the metal atoms. The cation has imposed C(2) symmetry (isosceles V(3) triangle), the C(2) axis passing through one V atom and the central &mgr;(3)-O atom, but has D(3)(h)() virtual symmetry (equilateral V(3) triangle). Complex 4 crystallizes in monoclinic space group C2/c with the following unit cell dimensions at -171 degrees C: a = 13.935(2) ?, b = 18.323(2) ?, c = 17.470(2) ?, beta = 95.55(1) degrees, V = 4439.7 ?(3), Z = 4. The structure was solved using 2657 unique reflections with F > 3sigma(F) and refined on F to conventional R (R(w)) values of 0.058 (0.066). Variable-temperature, solid-state magnetic susceptibility measurements were made on complex 1 in the 5.01-280 K region in a 1 kG magnetic field. The effective magnetic moment (&mgr;(eff)) per V(3) unit decreases gradually from 4.64 &mgr;(B) at 280 K to 1.76 &mgr;(B) at 5.01 K. The data were fit to the theoretical expression for an isosceles V(III)(3) complex, and the fitting parameters were J = -18.0(7) cm(-)(1), J' = -10.4(4) cm(-)(1), and g = 1.985, with TIP held constant at 600 x 10(-)(6) cm(3) mol(-)(1); J' refers to the unique exchange interaction within the isosceles triangle. The ground state of complex 1 thus has S = 0.  相似文献   

7.
The reaction of Mn(O(2)CPh)(2).2H(2)O and PhCO(2)H in EtOH/MeCN with NBu(n)(4)MnO(4) gives (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(9)(H(2)O)] (4) in high yield (85-95%). Complex 4 crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -129 degrees C: a = 17.394(3) ?, b = 19.040(3) ?, c = 25.660(5) ?, beta = 103.51(1) degrees, V = 8262.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 9.11% (9.26%) using 4590 unique reflections with F > 2.33sigma(F). The anion of 4 consists of a [Mn(4)(&mgr;(3)-O)(2)](8+) core with a "butterfly" disposition of four Mn(III) atoms. In addition to seven bridging PhCO(2)(-) groups, there is a chelating PhCO(2)(-) group at one "wingtip" Mn atom and terminal PhCO(2)(-) and H(2)O groups at the other. Complex 4 is an excellent steppingstone to other [Mn(4)O(2)]-containing species. Treatment of 4 with 2,2-diethylmalonate (2 equiv) leads to isolation of (NBu(n)(4))(2)[Mn(8)O(4)(O(2)CPh)(12)(Et(2)mal)(2)(H(2)O)(2)] (5) in 45% yield after recrystallization. Complex 5 is mixed-valent (2Mn(II),6Mn(III)) and contains an [Mn(8)O(4)](14+) core that consists of two [Mn(4)O(2)](7+) (Mn(II),3Mn(III)) butterfly units linked together by one of the &mgr;(3)-O(2)(-) ions in each unit bridging to one of the body Mn atoms in the other unit, and thus converting to &mgr;(4)-O(2)(-) modes. The Mn(II) ions are in wingtip positions. The Et(2)mal(2)(-) groups each bridge two wingtip Mn atoms from different butterfly units, providing additional linkage between the halves of the molecule. Complex 5.4CH(2)Cl(2) crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -165 degrees C: a = 16.247(5) ?, b = 27.190(8) ?, c = 17.715(5) ?, beta = 113.95(1) degrees, V = 7152.0 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 8.36 (8.61%) using 4133 unique reflections with F > 3sigma(F). The reaction of 4 with 2 equiv of bpy or picolinic acid (picH) yields the known complex Mn(4)O(2)(O(2)CPh)(7)(bpy)(2) (2), containing Mn(II),3Mn(III), or (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(pic)(2)] (6), containing 4Mn(III). Treatment of 4 with dibenzoylmethane (dbmH, 2 equiv) gives the mono-chelate product (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(8)(dbm)] (7); ligation of a second chelate group requires treatment of 7 with Na(dbm), which yields (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(dbm)(2)] (8). Complexes 7 and 8 both contain a [Mn(4)O(2)](8+) (4Mn(III)) butterfly unit. Complex 7 contains chelating dbm(-) and chelating PhCO(2)(-) at the two wingtip positions, whereas 8 contains two chelating dbm(-) groups at these positions, as in 2 and 6. Complex 7.2CH(2)Cl(2) crystallizes in monoclinic space group P2(1) with the following unit cell parameters at -170 degrees C: a = 18.169(3) ?, b = 19.678(4) ?, c = 25.036(4) ?, beta = 101.49(1) degrees, V = 8771.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 7.36% (7.59%) using 10 782 unique reflections with F > 3sigma(F). Variable-temperature magnetic susceptibility studies have been carried out on powdered samples of complexes 2 and 5 in a 10.0 kG field in the 5.0-320.0 K range. The effective magnetic moment (&mgr;(eff)) for 2 gradually decreases from 8.61 &mgr;(B) per molecule at 320.0 K to 5.71 &mgr;(B) at 13.0 K and then increases slightly to 5.91 &mgr;(B) at 5.0 K. For 5, &mgr;(eff) gradually decreases from 10.54 &mgr;(B) per molecule at 320.0 K to 8.42 &mgr;(B) at 40.0 K, followed by a more rapid decrease to 6.02 &mgr;(B) at 5.0 K. On the basis of the crystal structure of 5 showing the single Mn(II) ion in each [Mn(4)O(2)](7+) subcore to be at a wingtip position, the Mn(II) ion in 2 was concluded to be at a wingtip position also. Employing the reasonable approximation that J(w)(b)(Mn(II)/Mn(III)) = J(w)(b)(Mn(III)/M(III)), where J(w)(b) is the magnetic exchange interaction between wingtip (w) and body (b) Mn ions of the indicated oxidation state, a theoretical chi(M) vs T expression was derived and used to fit the experimental molar magnetic susceptibility (chi(M)) vs T data. The obtained fitting parameters were J(w)(b) = -3.9 cm(-)(1), J(b)(b) = -9.2 cm(-)(1), and g = 1.80. These values suggest a S(T) = (5)/(2) ground state spin for 2, which was confirmed by magnetization vs field measurements in the 0.5-50.0 kG magnetic field range and 2.0-30.0 K temperature range. For complex 5, since the two bonds connecting the two [Mn(4)O(2)](7+) units are Jahn-Teller elongated and weak, it was assumed that complex 5 could be treated, to a first approximation, as consisting of weakly-interacting halves; the magnetic susceptibility data for 5 at temperatures >/=40 K were therefore fit to the same theoretical expression as used for 2, and the fitting parameters were J(w)(b) = -14.0 cm(-)(1) and J(b)(b) = -30.5 cm(-)(1), with g = 1.93 (held constant). These values suggest an S(T) = (5)/(2) ground state spin for each [Mn(4)O(2)](7+) unit of 5, as found for 2. The interactions between the subunits are difficult to incorporate into this model, and the true ground state spin value of the entire Mn(8) anion was therefore determined by magnetization vs field studies, which showed the ground state of 5 to be S(T) = 3. The results of the studies on 2 and 5 are considered with respect to spin frustration effects within the [Mn(4)O(2)](7+) units. Complexes 2 and 5 are EPR-active and -silent, respectively, consistent with their S(T) = (5)/(2) and S(T) = 3 ground states, respectively.  相似文献   

8.
By treatment of Zn-reduced ethanolic solutions of NbCl5 with HCl in the presence of sulfide followed by cation-exchange chromatography, two oxo-sulfido niobium aqua ions, the red [Nb4(mu4-S)(mu2-O)5(H2O)10]4+ and the yellow-brown [Nb5(mu3-S)2(mu3-O)2(mu2-O)2(H2O)14]8+, were isolated. Both readily form their respective thiocyanate complexes, for which the structure for the former has been previously reported. Brown crystals of (Me2NH2)6[Nb5S2O4(NCS)14].3.5H2O (1) were isolated in the case of the latter, and the structure was determined by X-ray crystallography (space group: a = 15.4018(5) A, b = 21.1932(8) A, c = 22.0487(8) A, alpha=gamma = 90 degrees , beta = 103.4590(10) degrees , and R(1) = 0.0659). An unprecedented pentanuclear Nb5S2O48+ core is revealed in which short Nb-Nb distances (2.7995(8)-2.9111(8) A) are consistent with metal-metal bonding. A stopped-flow kinetic study of the 1:1 equilibration of NCS- with [Nb4(mu4-S)(mu2-O)5(H2O)10]4+ has been carried out. Equilibration rate constants are independent of [H(+)] in the range investigated (0.5-2.0 M) and at 25 degrees C; kf= 9.5 M(-1) s(-1), kaq = 2.6 x 10(-2) s(-1), and K = 365 M1). Conditions with first NCS- and then [Nb4(mu4-S)(mu2-O)5(H2O)10]4+ in excess revealed a statistical factor of 4, suggesting the presence of four kinetically equivalent Nb atoms. Attempts to study the 1:1 substitution of NCS- with [Nb5(mu3-S)2(mu3-O)2(mu2-O)2(H2O)14]8+ showed signs of saturation kinetics. Quantum chemical calculations using the density functional theory (DFT) approach were performed on both the Nb4O5S4+ and Nb5O4S28+ naked clusters. The highest occupied and lowest unoccupied molecular orbitals have dominant Nb(4d) character. The HOMO for Nb4O5S4+ is a nondegenerate fully filled MO, whereas for Nb5O4S28+, it is a nondegenerate partially filled MO with one unpaired electron. EPR spectroscopy on [Nb5(mu3-S)2(mu3-O)2(mu2-O)2(H2O)14]8+ shows that the molecule has total anisotropy (C2v), with all three tensors, gx= 2.399, gy= 1.975, and gz= 1.531, resolved. No hyperfine interaction expected from the nuclear moment of I = 9/2 for 93Nb was observed.  相似文献   

9.
Four new Cu(II) complexes {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(7)H(5)O(2))(2)·6H(2)O 1, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(5)H(6)O(4))·8H(2)O 2, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(C(5)H(6)O(4))(2)·16H(2)O 3 and {[Cu(6)(bpy)(6)(OH)(6)(H(2)O)(2)]}(C(8)H(7)O(2))(6)·12H(2)O 4 were synthesized (bpy = 2,2'-bipyridine, H(2)(C(5)H(6)O(4)) = glutaric acid, H(C(7)H(5)O(2)) = benzoic acid, H(C(8)H(7)O(2)) = phenyl acetic acid). The building units in 1-3 are the tetranuclear [Cu(4)(bpy)(4)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(2)](4+) complex cations, and in 4 the hexanuclear [Cu(6)(bpy)(6)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(4)](6+) complex cations, respectively. The tetra- and hexanuclear cluster cores [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] and [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] in the complex cations could be viewed as from step-like di- and trimerization of the well-known hydroxo-bridged dinuclear [Cu(2)(μ(2)-OH)(2)] entities via the out-of-plane Cu-O(H) bonds. The complex cations are supramolecularly assembled into (4,4) topological networks via intercationic ππ stacking interactions. The counteranions and lattice H(2)O molecules are sandwiched between the 2D cationic networks to form hydrogen-bonded networks in 1-3, while the phenyl acetate anions and the lattice H(2)O molecules generate 3D hydrogen-bonded anionic framework to interpenetrate with the (4,4) topological cationic networks with the hexanuclear complex cations in the channels. The ferromagnetic coupling between Cu(II) ions in the [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] cores of 1-3 is significantly stronger via equatorial-equatorial OH(-) bridges than via equatorial-apical ones. The outer and the central [Cu(2)(OH)(2)] unit within the [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] cluster cores in 4 exhibit weak ferromagnetic and antiferromagnetic interactions, respectively. Results about i.r. spectra, thermal and elemental analyses are presented.  相似文献   

10.
New polynuclear nickel trimethylacetates [Ni6(OH)4(C5H9O2)8(C5H10O2)4] (6), [Ni7(OH)7(C5H9O2)7(C5H10O2)6(H2O)] x 0.5 C6H14 x 0.5 H2O (7), [Ni8(OH)4(H2O)2(C5H9O2)12] (8), and [Ni9(OH)6(C5H9O2)12(C5H10O2)4] x C5H10O2 x 3 H2O (9), where C5H9O2 is trimethylacetate and C5H10O2 is trimethylacetic acid, have been found. Their structures were determined by X-ray crystallography. Because of their high solubility in low-polarity organic solvents, compounds 6-9 reacted with stable organic radicals to form the first heterospin compounds based on polynuclear Ni(II) trimethylacetate and nitronyl nitroxides containing pyrazole (L(1)-L(3)), methyl (L(4)), or imidazole (L(5)) substituent groups, respectively, in side chain [Ni7(OH)5(C5H9O2)9(C5H10O2)2(L(1))2(H2O)] x 0.5 C6H14 x H2O (6+1a), [Ni7(OH)5(C5H9O2)9(C5H10O2)2(L2)2(H2O)] x H2O (6+1b), [Ni7(OH)5(C5H9O2)9(C5H10O2)2(L(3))2(H2O)] x H2O (6+1c), [Ni6(OH)3(C5H9O2)9(C5H10O2)4(L(4))] x 1.5 C6H14 (6'), and [Ni4OH)3(C5H9O2)5(C5H10O2)4(L(5))] x 1.5 C7H8 (4). Their structures were also determined by X-ray crystallography. Although Ni(II) trimethylacetates may have varying nuclearity and can change their nuclearity during recrystallization or interactions with nitroxides, this family of compounds is easy to study because of its topological relationship. For any of these complexes, the polynuclear framework may be derived from the [Ni6] polynuclear fragment {Ni6(mu4-OH)2(mu3-OH)2(mu2-C5H9O2-O,O')6(mu2-C5H9O2-O,O)(mu4-C5H9O2-O,O,O',O')(C5H10O2)4}, which is shaped like an open book. On the basis of this fragment, the structure of 7-nuclear compounds (7 and 6+1a-c) is conveniently represented as the result of symmetric addition of other mononuclear fragments to the four Ni(II) ions lying at the vertexes of the [Ni6] open book. The 9-nuclear complex is formed by the addition of trinuclear fragments to two Ni(II) ions lying on one of the lateral edges of the [Ni6] open book. This wing of the 9-nuclear complex preserves its structure in another type of 6-nuclear complex (6') with the boat configuration. If, however, two edge-sharing Ni(II) ions are removed from [Ni6] (one of these lies at a vertex of the open book and the other, on the book-cover line), we obtain a 4-nuclear fragment recorded in the molecular structure of 4. Twinning of this 4-nuclear fragment forms highly symmetric molecule 8, which is a new chemical version of cubane.  相似文献   

11.
A comparative analysis of predictive ability of three approaches to estimate the rate constants of reactions of H(2), H, H(2)O and CH(4) with electronically excited O(2)(a(1)Δ(g)) and O(2)(b(1)Σ(g)(+)) molecules is conducted. The first approach is based on a detailed ab initio study of potential energy surfaces. The second one is known as the "bond energy-bond order" method, and the third approach is a modification of the updated method of vibronic terms that makes it possible to evaluate the activation energy of reactions involving electronically excited species. The comparison showed that the estimates of the energy barrier by the updated method of vibronic terms for some reactions can be in good agreement with ab initio calculations and available experimental data. It was revealed that reactions of O(2)(b(1)Σ(g)(+)) molecules with H(2), H(2)O and CH(4) molecules and with the H atom result in the formation of electronically excited species. The reactivity of O(2)(b(1)Σ(g)(+)) molecules is smaller than that of O(2)(a(1)Δ(g)) ones, but much higher as compared to the reactivity of ground state O(2) molecules. For each reaction under study involving oxygen molecules in the excited electronic states O(2)(a(1)Δ(g)) and O(2)(b(1)Σ(g)(+)) the recommended temperature-dependent rate constants are presented.  相似文献   

12.
The synthesis and physical characterization of oxo-bridged [Cr(2)(tmpa)(2)(&mgr;-O)(X)](n)()(+) complexes (tmpa = tris(2-pyridylmethyl)amine) containing a variety of complementary ligands (X = CO(3)(2)(-), PhPO(4)(2)(-), HS(-)) are described, with the objective of understanding factors underlying variations in the antiferromagnetic coupling constant J. We also present the crystal structure of [(tmpa)Cr(&mgr;-O)(&mgr;-CO(3))Cr(tmpa)](ClO(4))(2).2H(2)O, for comparison with previous findings on [(tmpa)Cr(&mgr;-O)(&mgr;-CH(3)CO(2))Cr(tmpa)](ClO(4))(3). The carbonate-bridged complex crystallizes in the monoclinic space group P2(1)/c with a = 11.286(10) ?, b = 18.12(2) ?, c = 20.592(12) ?, beta = 95.99(5) degrees, and V = 4190 ?(3) and Z = 4. Asymmetric tmpa ligation pertains, with apical N atoms situated trans to bridging oxo and acido O atoms. Key structural parameters include Cr-O(b) bond lengths of 1.818(6) and 1.838(6) ?, Cr-OCO(2) distances of 1.924(7) and 1.934(7) ?, and a bridging bond angle of 128.3(3) degrees. Several attempts to prepare oxo, amido-bridged dimers were unsuccessful, but the nearlinear [Cr(tmpa)(N(CN)(2))](2)O(ClO(4))(2).3H(2)O complex was isolated from the reaction of dicyanamide ion with [Cr(tmpa)(OH)](2)(4+). In contrast to the behavior of analogous diiron(III) complexes, antiferromagnetic coupling constants of [Cr(2)(tmpa)(2)(&mgr;-O)(X)](n)()(+) dinuclear species are highly responsive to the X group. Considering the complexes with X = CO(3)(2)(-), PhPO(4)(2)(-), HS(-), SO(4)(2)(-), and RCO(2)(-) (10 R substituents), we find a reasonably linear, empirical relationship between J and oxo bridge basicity, as measured by pK(a) (Cr(OH)Cr) values in aqueous solution. While there is no theoretical basis for such a correlation between solid-state and solution-phase properties, this relationship demonstrates that CrOCr pi-bonding contributes significantly to antiferromagnetic exchange. Thus, J tends to become less negative with increasing &mgr;-O(2)(-) basicity, showing that greater availability of a bridging oxo group lone pair toward the proton, with decreasing CrOCr pi-interaction, reduces the singlet-triplet gap.  相似文献   

13.
We present the spin-orbit (SO) and Renner-Teller (RT) quantum dynamics of the spin-forbidden quenching O((1)D) + N(2)(X(1)Σ(g)(+)) → O((3)P) + N(2)(X(1)Σ(g)(+)) on the N(2)O X(1)A', ?(3)A", and b(3)A' coupled PESs. We use the permutation-inversion symmetry, propagate coupled-channel (CC) real wavepackets, and compute initial-state-resolved probabilities and cross sections σ(j(0)) for the ground vibrational and the first two rotational states of N(2), j(0) = 0 and 1. Labeling symmetry angular states by j and K, we report selection rules for j and for the minimum K value associated with any electronic state, showing that ?(3)A" is uncoupled in the centrifugal-sudden (CS) approximation at j(0) = 0. The dynamics is resonance-dominated, the probabilities are larger at low K, σ(j(0)) decrease with the collision energy and increase with j(0), and the CS σ(0) is lower than the CC one. The nonadiabatic interactions play different roles on the quenching dynamics, because the X(1)A'-b(3)A' SO effects are those most important while the ?(3)A"-b(3)A' RT ones are negligible.  相似文献   

14.
Yu K  Zhou BB  Yu Y  Su ZH  Yang GY 《Inorganic chemistry》2011,50(5):1862-1867
A new layered molybdenum cobalt phosphate, Na(2)[Co(H(2)O)(6)][(Mo(16)O(32))Co(16)(PO(4))(4) (HPO(4))(16)(H(2)PO(4))(4)(OH)(4)(C(10)H(8)N(2))(4)(C(5)H(4)N)(2)(H(2)O)(6)]·4H(2)O (1), has been hydrothermally synthesized and structurally characterized. 1 crystallizes in the monoclinic space group P2(1)/n with a = 15.6825(18) ?, b = 39.503(4) ?, c = 17.2763(17) ?, β = 93.791(2)°, V = 10679.4(18) ?(3), and Z = 2. A polyoxoanion of 1 exhibits an unusual organic-inorganic hybrid wheel-type cluster, in which two pyridine ligands link to the surface Co(II) atoms of a [H(24)(Mo(16)O(32))Co(16)(PO(4))(24)(OH)(4)(H(2)O)(6)] (namely, {Mo(16)Co(16)P(24)}) wheel via the Co-N bonds. Furthermore, each {Mo(16)Co(16)P(24)} wheel is connected to four adjacent wheels by four pairs of 4,4'-bipyridine linkers, forming a 2D layered network. The susceptibility measurement shows the existence of dominant antiferromagnetic interactions in 1.  相似文献   

15.
An approach for the preparation of oxy/hydroxy briged Fe(III) clusters that takes advantage of hydrolytic condensations of well defined {Fe(2)hpdta(H(2)O)(4)} building units is presented. Co-ligands such as tripodal H(3)tea or bidentate organic bases such as ethylenediamine (enH(2)) can be used to complete the coordination spheres of the Fe(III) centres and stabilise unsymmetrical iron-oxo clusters with non-zero magnetic ground spin-states. This strategy led to the isolation of a pentanuclear complex [Fe(5)(μ(3)-O)(hpdta)(H(2)tea)(Htea)(2))(tea)]·{N(C(2)H(4)OH)(3)}·2EtOH·7H(2)O (1) and a nonanuclear coordination complex [Fe(9)(μ(3)-O)(5)(μ-OH)(5)(en)(6)(hpdta)(2)](NO(3))(2)·7H(2)O (2).  相似文献   

16.
The synthesis and magnetic properties are reported of two new clusters [Mn(10)O(4)(OH)(2)(O(2)CMe)(8)(hmp)(8)](ClO(4))(4) (1) and [Mn(7)(OH)(3)(hmp)(9)Cl(3)](Cl)(ClO(4)) (2). Complex 1 was prepared by treatment of [Mn(3)O(O(2)CMe)(6)(py)(3)](ClO(4)) with 2-(hydroxymethyl)pyridine (hmpH) in CH(2)Cl(2), whereas 2 was obtained from the reaction of MnCl(2).4H(2)O, hmpH, and NBu(n)(4)MnO(4) in MeCN followed by recrystallization in the presence of NBu(n)(4)ClO(4). Complex 1.2py.10CH(2)Cl(2).2H(2)O crystallizes in the triclinic space group P1. The cation consists of 10 Mn(III) ions, 8 mu(3)-O(2)(-) ions, 2 mu(3)-OH(-) ions, 8 bridging acetates, and 8 bridging and chelating hmp(-) ligands. The hmp(-) ligands bridge through their O atoms in two ways: two with mu(3)-O atoms and six with mu(2)-O atoms. Complex 2.3CH(2)Cl(2).H(2)O crystallizes in the triclinic space group P1. The cation consists of four Mn(II) and three Mn(III) ions, arranged as a Mn(6) hexagon of alternating Mn(II) and Mn(III) ions surrounding a central Mn(II) ion. The remaining ligation is by three mu(3)-OH(-) ions, three terminal chloride ions, and nine bridging and chelating hmp(-) ligands. Six hmp(-) ligands contain mu(2)-O atoms and three contain mu(3)-O atoms. The Cl(-) anion is hydrogen-bonded to the three mu(3)-OH(-) ions. Variable-temperature direct current (dc) magnetic susceptibility data were collected for complex 1 in the 5.00-300 K range in a 5 kG applied field. The chi(M)T value gradually decreases from 17.87 cm(3) mol(-1) K at 300 K to 1.14 cm(3) mol(-1) K at 5.00 K, indicating an S = 0 ground state. The ground-state spin of complex 2 was established by magnetization measurements in the 0.5-3.0 T and 1.80-4.00 K ranges. Fitting of the data by matrix diagonalization, incorporating only axial anisotropy (DS(z)(2)), gave equally good fits with S = 10, g = 2.13, D = -0.14 cm(-1) and S = 11, g = 1.94, D = -0.11 cm(-1). Magnetization versus dc field scans down to 0.04 K reveal no hysteresis attributable to single-molecule magnetism behavior, only weak intermolecular interactions.  相似文献   

17.
Four Th(IV) hydroxide/oxide clusters have been synthesized from aqueous solution. The structures of [Th(8)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(15)(SeO(4))(8)·7.5H(2)O] (1), [Th(8)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(17)(SeO(4))(8)·nH(2)O] (2), [Th(9)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(21)(SeO(4))(10)] (3), and Th(9)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(21)(SeO(4))(10)·nH(2)O (4) were determined using single crystal X-ray diffraction. Each structure consists of an octanuclear core, [Th(8)O(4)(OH)(8)](16+), that is built from eight Th(IV) atoms (four Th in a plane and two up and two down) linked by four "inner" μ(3)-O and eight "outer" μ(2)-OH groups. Compounds 3 and 4 additionally contain mononuclear [Th(H(2)O)(5)(SeO(4))(4)](4-) units that link the octamers into an extended structure. The octanuclear units are invariably complexed by two selenate anions that sit in two cavities formed by four planar Th(IV) and four extra-planar Th(IV) atoms, thus making [Th(8)O(4)(OH)(8)(SeO(4))(2)](12+) a common building block in 1-4. However, changes in hydration as well selenate coordination give rise to structural differences that are observed in the extended structures of 1-4. The compounds were also characterized by Raman spectroscopy. Density functional theory calculations were performed to predict the geometries, vibrational frequencies, and relative energies of different structures. Details of the calculated structures are in good agreement with experimental results, and the calculated frequencies were used to assign the experimental Raman spectra. On the basis of an analysis of the DFT results, the compound Th(8)O(8)(OH)(4)(SeO(4))(6) was predicted to be a strong gas phase acid but is reduced to a weak acid in aqueous solution. Of the species studied computationally, the dication Th(8)O(6)(OH)(6)(SeO(6))(6)(2+) is predicted to be the most stable in aqueous solution at 298 K followed by the monocation Th(8)O(7)(OH)(5)(SeO(6))(6)(+).  相似文献   

18.
A series of di-, tri-, and tetra-nuclear iron-oxido clusters with bis(trimethylsilyl)amide and thiolate ligands were synthesized from the reactions of Fe{N(SiMe(3))(2)}(2) (1) with 1 equiv of thiol HSR (R = C(6)H(5) (Ph), 4-(t)BuC(6)H(4), 2,6-Ph(2)C(6)H(3) (Dpp), 2,4,6-(i)Pr(3)C(6)H(2) (Tip)) and subsequent treatment with O(2). The trinuclear clusters [{(Me(3)Si)(2)N}Fe](3)(μ(3)-O){μ-S(4-RC(6)H(4))}(3) (R = H (3a), (t)Bu (3b)) were obtained from the reactions of 1 with HSPh or HS(4-(t)BuC(6)H(4)) and O(2), while we isolated a tetranuclear cluster [{(Me(3)Si)(2)N}(2)Fe(2)(μ-SDpp)](2)(μ(3)-O)(2) (4) as crystals from an analogous reaction with HSDpp. Treatment of a tertrahydrofuran (THF) solution of 1 with HSTip and O(2) resulted in the formation of a dinuclear complex [{(Me(3)Si)(2)N}(TipS)(THF)Fe](2)(μ-O) (5). The molecular structures of these complexes have been determined by X-ray crystallographic analysis.  相似文献   

19.
Two new polynuclear oxo/hydroxo-bridged polynuclear gallium(III) aqua complexes are obtained upon treatment of Ga(3+)(aq) with pyridine: the supramolecular compound of macrocyclic cavitand cucurbit[6]uril with gallium complex containing 32 metal atoms [Ga(32)(mu(4)-O)(12)(mu(3)-O)(8)(mu(2)-O)(7)(mu(2)-OH)(39)(H(2)O)(20)](PyH subsetC(36)H(36)N(24)O(12))(3)(NO(3))(6).53H(2)O (1) and the tridecanuclear complex [Ga(13)(mu(3)-OH)(6)(mu(2)-OH)(18)(H(2)O)(24)](NO(3))(15).12H(2)O (2). It follows that two modes of nucleation exist when Ga(3+)(aq) is hydrolyzed: one around the tetrahedral GaO(4) units (complex 1) and the other around the octahedral GaO(6) units (complex 2). This is the first time that polynuclear oxo/hydroxo-bridged aqua complexes of Ga(III) have been isolated without the use of other ligands to control or block olygomerization.  相似文献   

20.
The structure and electron density distribution (EDD) of the carboxylate-bridge iron complex [Fe(III)(4)(micro(3)-O)(2)(O(2)CCMe(3))(8)(NC(5)H(4)Me)(2)].2CH(3)CN, 1, has been determined from synchrotron X-ray diffraction data (R(int) = 0.025) collected with the crystal cooled to 16(5) K. At this temperature complex 1 crystallized in the triclinic space group P with cell parameters a = 12.6926(7) A, b = 12.9134(8) A, c = 13.4732(8) A, alpha = 115.372(2) degrees, beta = 107.702(3) degrees, and gamma = 102.731(2) degrees. The theoretical EDD determined from a density functional theory (DFT) single point calculation of an entire molecule of 1 at the experimental geometry has been analyzed and compared to the experimental EDD. The latter is expressed in the framework of a multipolar model with parameters determined by least-squares refinement (R(w)(F(2)) = 0.024) based on the X-ray diffraction data. The central micro(3)-oxygen atom in 1 is significantly out of the plane spanned by the three Fe atoms coordinated to this oxygen. Comparison of measures for the bonding geometry around the iron atoms in 1 with the corresponding values for the iron atoms in relevant trinuclear complexes suggests that there are significant differences in the Fe-(micro(3)-O) bonds in the two cases. Analyses of both the experimental and theoretical EDDs reveal very significant differences between the two Fe-(micro(3)-O) bonds in 1, with one bond being much more directed and stronger than the other bond. A topological analysis of the EDDs using the atoms in molecules approach also reveals very distinct differences between the properties of the two Fe(III) atoms. A clear exponential relationship is found between the Laplacian of the experimental density at the bond critical points in the Fe-ligand bonds and their bond lengths. M?ssbauer spectroscopy of 1 shows two easily separable doublets corresponding to the two different iron sites. Magnetic susceptibility measurements between 4.2 and 300 K indicate antiferromagnetically coupled Fe(III) atoms constituting an S = 0 ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号