共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetrahydrofuran (THF) is one of the most widely used analogues for gas hydrates as well as a commonly used additive for reducing the formation pressure of a given hydrate process. Hydrates are also currently being investigated as storage materials for hydrogen as well as materials for hydrogen separations. Here we present a thermodynamic model, based on the CSMGem framework, that accurately captures the phase behavior of various hydrates containing THF and hydrogen. The model uses previously regressed parameters for components other than THF and H2, and can reproduce hydrate formation conditions for a number of hydrates containing THF and/or hydrogen (simple THF, THF + CH4, THF + N2, THF + CO2, THF + H2, CH4 + H2, C2H6 + H2 and C3H8 + H2). The incorporation of THF and H2 within this model framework will serve as a valuable tool for hydrate scenarios involving either of these components. 相似文献
2.
Binary structure H (sH) hydrogen and methyl-tert-butylether (MTBE) clathrate hydrates are studied with molecular dynamics simulations. Simulations on a 3 x 3 x 3 sH unit cell with up to 4.7 mass % hydrogen gas are run at pressures of 100 bars and 2 kbars at 100 and 273 K. For the small and medium cages of the sH unit cell, H2 guest molecule occupancies of 0, 1 (single occupancy), and 2 (double occupancy) are considered with the MTBE molecule occupying all of the large cages. An increase of the small and medium cage occupancies from 1 to 2 leads to a jump in the unit cell volume and configurational energy. Calculations are also set up with 13, 23, and 89 of the MTBE molecules in the large cages replaced by sets of three to six H2 molecules, and the effects on the configurational energy and volume of the simulation cell are determined. As MTBE molecules are replaced with sets of H2 guests in the large cages, the configurational energy of the unit cell increases. At the lower temperature, the energy and volume of the clathrate are not sensitive to the number of hydrogen guests in the large cages; however, at higher temperatures the repulsions among the H2 guest molecules in the large cages cause an increase in the system energy and volume. 相似文献
3.
Strobel TA Taylor CJ Hester KC Dec SF Koh CA Miller KT Sloan ED 《The journal of physical chemistry. B》2006,110(34):17121-17125
The hydrogen storage capacity of binary THF-H(2) clathrate hydrate has been determined as a function of formation pressure, THF composition, and time. The amount of hydrogen stored in the stoichiometric hydrate increases with pressure and exhibits asymptotic (Langmuir) behavior to approximately 1.0 wt % H(2). This hydrogen concentration corresponds to one hydrogen molecule occupying each of the small 5(12) cavities and one THF molecule in each large 5(12)6(4) cavity in the hydrate framework. Contrary to previous reports, hydrogen storage was not increased upon decreasing the THF concentration below the stoichiometric 5.6 mol % solution to 0.5 mol %, at constant pressure, even after one week. This provides strong evidence that THF preferentially occupies the large 5(12)6(4) cavity over hydrogen, for the range of experimental conditions tested. The maximum amount of hydrogen stored in this binary hydrate was about 1.0 wt % at moderate pressure (<60 MPa) and is independent of the initial THF concentration over the range of conditions tested. 相似文献
4.
5.
Classical equilibrium molecular dynamics simulations have been performed to investigate dynamical properties of cage radial breathing modes and intra- and inter-cage hydrogen migration in both pure hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 0.05 kbar and up to 250 K. For the mixed H(2)-THF system in which there is single H(2) occupation of the small cage (labelled "1SC 1LC"), we find that no H(2) migration occurs, and this is also the case for pure H(2) hydrate with single small-cavity occupation and quadruple occupancy for large cages (dubbed "1SC 4LC"). However, for the more densely filled H(2)-THF and pure-H(2) systems, in which there is double H(2) occupation in the small cage (dubbed "2SC 1LC" and "2SC 4LC," respectively), there is an onset of inter-cage H(2) migration events from the small cages to neighbouring cavities at around 200 K, with an approximate Arrhenius temperature-dependence for the migration rate from 200 to 250 K. It was found that these "cage hopping" events are facilitated by temporary openings of pentagonal small-cage faces with the relaxation and reformation of key stabilising hydrogen bonds during and following passage. The cages remain essentially intact up to 250 K, save for transient hydrogen bond weakening and reformation during and after inter-cage hydrogen diffusion events in the 200-250 K range. The "breathing modes," or underlying frequencies governing the variation in the cavities' radii, exhibit a certain overlap with THF rattling motion in the case of large cavities, while there is some overlap of small cages' radial breathing modes with lattice acoustic modes. 相似文献
6.
Changes in the Gibbs energy of hydration of molecular hydrogen and tetrahydrofuran (THF) at pressures of 0.1, 6.0, and 12.0
MPa over the temperature range 230–300 K were studied by the molecular dynamics method. The Gibbs energy of hydrogen in water-tetrahydrofuran-hydrogen
solutions passed minima over the temperature range 235–265 K, which were indicative of a comparatively stable clathrate hydrate
state. The Gibbs energy of the hydrogen molecule at the local minimum at 262 K was ∼4.5 kJ/mol; at atmospheric pressure and
room temperature, it was ∼2 kJ/mol. An analysis of the radial distribution function and the coordination number of the THF
molecule showed that, at 240–257 K, a clathrate hydrate of THF with the structure close to clathrate sII was predominantly
formed. 相似文献
7.
Phase equilibrium measurements of structure II clathrate hydrates of hydrogen with various promoters
Alondra Torres TruebaLaura J. Rovetto Louw J. FlorusseMaaike C. Kroon Cor J. Peters 《Fluid Phase Equilibria》2011,307(1):6-10
Phase equilibrium measurements of single and mixed organic clathrate hydrates with hydrogen were determined within a pressure range of 2.0-14.0 MPa. The organic compounds studied were furan, 2,5-dihydrofuran, tetrahydropyran, 1,3-dioxolane and cyclopentane. These organic compounds are known to form structure II clathrate hydrates with water. It was found that the addition of hydrogen to form a mixed clathrate hydrate increases the stability compared to the single organic clathrate hydrates. Moreover, the mixed clathrate hydrate also has a much higher stability compared to a pure hydrogen structure II clathrate hydrate. Therefore, the organic compounds act as promoter materials. The stabilities of the single and mixed organic clathrate hydrates with hydrogen showed the following trend in increasing order: 1,3-dioxolane < 2,5-dihydrofuran < tetrahydropyran < furan < cyclopentane, indicating that both size and geometry of the organic compound determine the stability of the clathrate hydrates. 相似文献
8.
O. Yamamuro T. Matsuo H. Suga 《Journal of inclusion phenomena and macrocyclic chemistry》1990,8(1-2):33-44
Complex dielectric permittivities of pure and KOH-doped (x = 1.8 x 10–4) tetrahydrofuran clathrate hydrates were measured in the temperature range 20–260 K and in the frequency range 20 Hz-1 MHz. The relaxation time of the water reorientational motion was found to decrease drastically as a result of the doping; e.g., the relaxation time of the doped sample was 10–9 times shorter than that of the pure sample at 70 K. The activation enthalpy of the motion was reduced to 7.4 kJ mol–1. On cooling the crystal, the value of decreased suddenly at the 62 K phase transition to the
2 value of the pure sample and at the same time disappeared. No dispersion effect due to the guest reorientation was observed below the transition. These data indicate that both the host and guest molecules become ordered or, at least, change their mobility drastically. In the pure sample, a relaxation phenomenon of
02 was found around the glass transition region. The relaxation times agreed well with those derived from the enthalpy of relaxation in a calorimetric study.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena. 相似文献
9.
10.
Mohammadi-Manesh H Alavi S Woo TK Najafi B 《Physical chemistry chemical physics : PCCP》2011,13(6):2367-2377
We perform molecular dynamics simulations (up to 6 ns) for the structure I clathrate hydrates of linear molecules CS, CS(2), OCS, and C(2)H(2) in large cages at different temperatures in the stability range to determine the angular distribution and dynamics of the guests in the large cages. The long axes of linear guest molecules in the oblate large structure I clathrate hydrate cages are primarily confined near the equatorial plane of the cage rather than axial regions. This non-uniform spatial distribution leads to well-known anisotropic lineshapes in the solid-state NMR spectra of the guest species. We use the dynamic distribution of guest orientations in the cages during the MD simulations at different temperatures to predict the (13)C NMR powder lineshapes of the guests in the large cages. The length of the guests and intermolecular interactions of the guests in the water cages determine the angular distribution and the mobility of the guests in the sI large cages at different temperatures. At low temperatures the range of motion of the guests in the cages are limited and this is reflected in the skew of the predicted (13)C lineshapes. As the guest molecules reach the fast motion limit at higher temperatures, the lineshapes for CS, OCS, and C(2)H(2) are predicted to have the "standard" powder lineshapes of guest molecules. 相似文献
11.
Hester KC Strobel TA Sloan ED Koh CA Huq A Schultz AJ 《The journal of physical chemistry. B》2006,110(29):14024-14027
We have determined the time-space average filling of hydrogen molecules in a binary tetrahydrofuran (THF)-d(8) + D(2) sII clathrate hydrate using high resolution neutron diffraction. The filling of hydrogen in the lattice of a THF-d(8) clathrate hydrate occurred upon pressurization. The hydrogen molecules were localized in the small dodecahedral cavities at 20 K, with nuclear density from the hydrogen approximately spherically distributed and centered in the small cavity. With a formation pressure of 70 MPa, molecular hydrogen was found to only singly occupy the sII small cavity. This result helps explain discrepancies about the hydrogen occupancy in the THF binary hydrate system. 相似文献
12.
Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO(2) molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates. 相似文献
13.
Nagashima K Suzuki T Nagamoto M Shimizu T 《The journal of physical chemistry. B》2008,112(32):9876-9882
Directional growth of tetrahydrofuran (THF) clathrate hydrates was studied in a mixture of glass beads and a stoichiometric THF-water solution. Results showed that disseminated pore space type hydrates formed in a mixture containing 50-microm beads. However, a pure hydrate layer formed pushing the beads in a mixture containing 2-microm beads (frost heaving of hydrates). As the growth proceeded, new layers were formed repeatedly, leading to the eventual formation of a periodic layered pattern. It was found that as the growth rate increased, both the thickness of a hydrate layer and the interval between the neighboring layers decreased according to power laws. The effects of the applied temperature gradient and the weight ratio of the solution and glass beads were also systematically studied. Further, the possibility of applying our model experiments to the formation of natural methane hydrates was discussed. 相似文献
14.
The cage occupancy of hydrogen clathrate hydrate has been examined by grand canonical Monte Carlo (GCMC) simulations for wide ranges of temperature and pressure. The simulations are carried out with a fixed number of water molecules and a fixed chemical potential of the guest species so that hydrogen molecules can be created or annihilated in the clathrate. Two types of the GCMC simulations are performed; in one the volume of the clathrate is fixed and in the other it is allowed to adjust itself under a preset pressure so as to take account of compression by a hydrostatic pressure and expansion due to multiple cage occupancy. It is found that the smaller cage in structure II is practically incapable of accommodating more than a single guest molecule even at pressures as high as 500 MPa, which agrees with the recent experimental investigations. The larger cage is found to encapsulate at most 4 hydrogen molecules, but its occupancy is dependent significantly on the pressure of hydrogen. 相似文献
15.
M. Zakrzewski D. D. Klug J. A. Ripmeester 《Journal of inclusion phenomena and macrocyclic chemistry》1994,17(3):237-247
A high-pressure phase of the clathrate hydrate of tetrahydrofuran was prepared by freezing a liquid phase of overall composition THF · 7 H2O under a pressure of 3.0 kbar, or by pressurizing the solid structure II THF hydrate of 255K to 3.4 kbar. Unfortunately, the products recovered at 77K were always mixed phase materials as shown by X-ray powder diffraction. A number of diffraction lines could be indexed in terms of the cubic structure I hydrate with a slightly expanded lattice parameter, 12.08 Å, giving some support to Dyadin's idea that the high pressure phase transition involves a conversion of Structure II to Structure I. Other phases observed in the recovered product include Ice IX and amorphous materials. The reversion of the high pressure sample to the structure II hydrate was followed by differential scanning calorimetry. At ambient pressure, the high pressure sample converts slowly back to Structure II hydrate event at 77K.NRCC No. 35786. 相似文献
16.
Monreal IA Devlin JP Maşlakcı Z Çiçek MB Uras-Aytemiz N 《The journal of physical chemistry. A》2011,115(23):5822-5832
Low-temperature, low-pressure studies of clathrate hydrates (CHs) have revealed that small ether and other proton-acceptor guests greatly enhance rates of clathrate hydrate nucleation and growth; rapid formation and transformations are enabled at temperatures as low as 110 K, and cool moist vapors containing small ether molecules convert to mixed-gas CHs on a subsecond time scale. More recently, FTIR spectroscopic studies of the tetrahydrofuran (THF)-HCN double clathrate hydrate revealed a sizable frequency shift accompanied by a four-fold intensification of the C-N stretch-mode absorption of the small cage HCN, behavior that is enhanced by cooling and which correlates precisely with similar significant changes of the ether C-O/C-C stretch modes. These temperature-dependent correlated changes in the infrared spectra have been attributed to equilibrated extensive hydrogen bonding of neighboring large- and small-cage guest molecules with water molecules of the intervening wall. An ether guest functions as a proton acceptor, particularly so when complemented by the action of a proton-donor (HCN)/electron-acceptor (SO(2)) small-cage guest. Because guest molecules of the classic clathrate hydrates do not participate in hydrogen bonds with the host water, this H-bonding of guests has been labeled "nonclassical". The present study has been enriched by comparing observed FTIR spectra with high-level molecular orbital computational results for guests and hydrogen-bonded guest-water dimers. Vibrational frequency shifts, from heterodimerization of ethers and water, correlate well with the corresponding observed classical to nonclassical shifts. The new spectroscopic data reveal that the nonclassical structures can contribute at observable levels to CH infrared spectra for a remarkable range of temperatures and choice of guest molecules. By the choice of guest molecules, it is now possible to select the abundance levels of nonclassical configurations, ranging from ~0 to 100%, for a given temperature. This ability is expected to hasten understanding of the role of guest-induced nonclassical structures in the acceleration or inhibition of the rates of CH formation and transformation. 相似文献
17.
Nagashima K Orihashi S Yamamoto Y Takahashi M 《The journal of physical chemistry. B》2005,109(20):10147-10153
Encapsulation of saline solution as an impurity in tetrahydrofuran clathrate hydrates grown in a stoichiometric solution with 3 wt % NaCl and the release of a saline solution during melting along with inclusion migration by hydrate recrystallization during annealing are studied using a directional growth apparatus in combination with a Mach-Zender interferometer. Interferometric observation revealed that the salt concentration increased locally in the solution near the growth interface. The time evolution of salt concentration in the solution was in accordance with the numerical results obtained from the diffusion equation for salt, assuming perfect rejection of salt by the hydrate. However, after the interfacial pattern developed into a serrated pattern (periodical array of trough and crest), the salt concentration in the solution ceased to increase, deviating from the theoretical value. This indicates that the saline solution was encapsulated by the growth hydrate. On the other hand, upon melting of the slowly grown hydrate, the salt concentration near the interface was observed to be locally high at the location of the trough during growth, whereas it was dilute at the location of the growth crest. Furthermore, when the hydrate was annealed under an applied temperature gradient, the inclusions (encapsulated saline solution) in the hydrate migrated toward the bulk solution and were finally expelled by hydrate recrystallization. The migration speed of the inclusions increased with a larger temperature gradient. By melting the sample over a sufficiently long anneal time, the melt was determined to be completely desalinated. 相似文献
18.
Molecular dynamics simulations are used to study the stability of structure H (sH) clathrate hydrates with the rare gases Ne, Ar, Kr, and Xe. Simulations on a 3 x 3 x 3 sH unit cell replica are performed at ambient pressure at 40 and 100 K temperatures. The small and medium (s+m) cages of the sH unit cell are assigned rare gas guest occupancies of 1 and for large (l) cages guest occupancies of 1-6 are considered. Radial distribution functions for guest pairs with occupancies in the l-l, l-(s+m), and (s+m)-(s+m) cages are presented. The unit cell volumes and configurational energies are studied as a function of large cage occupancy for the rare gases. Free energy calculations are carried out to determine the stability of clathrates for large cage occupancies at 100 K and 1 bar and 20 kbar pressures. These studies show that the most stable argon clathrate has five guests in the large cages. For krypton and xenon the most stable configurations have three and two guests in the large cages, respectively. 相似文献
19.
Equilibrium melting temperatures for structure II THF hydrate and argon/xenon (Ar/Xe) binary hydrate have been calculated using molecular dynamics using two melting techniques, namely the Z method [Belonoshko et al., Phys. Rev. B, 2006, 73, 012201] (applied for the first time to complex molecular solids) and direct phase coexistence simulations. The two methods give results in moderate agreement: calculations with the Z method give T(fus) to be 250.7 K (0.77 katm) for THF and 244.3 K (1.86 katm) for Ar/Xe hydrate respectively; the corresponding direct phase coexistence calculations give T(fus) in the range 235-240 K (0.77 katm) for THF and 240-252.5 K (1.86 katm) for Ar/Xe hydrate. The Z method was found to define the key thermodynamic states with high precision, although required long simulation times with these multicomponent molecular systems to ensure the complete melting required by the method. In contrast, the direct phase coexistence method did bracket the equilibrium temperature with little difficulty, but small thermodynamic driving forces close to phase equilibrium generated long-lived fluctuations, that obscured the precise value of phase coexistence conditions within the bracketed range. 相似文献
20.
Yu. A. Dyadin K. A. Udachin S. V. Bogatyryova F. V. Zhurko Yu. I. Mironov 《Journal of inclusion phenomena and macrocyclic chemistry》1988,6(6):565-575
A double clathrate hydrate with the composition THF·0.5(n-Pr)4NF·16H2O and cubic structure II (CS-II,a=17.67 Å) has been obtained. Its experimental density is 1.053±0.001 g/cm3; its melting point is 8.1°C, i.e. 3.1°C higher than that of the THF·17H2O hydrate. The double hydrates of acetone, 1,4-dioxan, trimethyleneoxide and 1,3-dioxolane with (n-Pr)4NF have melting points of –14.8, –5.5, –2.6 and –9.6°C, respectively. With pressure increase up to 6 kbar the melting points of the double hydrates increase monotonously in contrast to common CS-II hydrates. The friability of the structure of the hydrates (the packing coefficient) and their sensitivity to pressure (dT/dP) are compared.The results of this work have been reported at the International Seminar on Inclusion Compounds, Jaszowiec (Poland), 24–26th September 1987. 相似文献