首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We utilize two-color two-dimensional infrared spectroscopy to measure the intermolecular coupling between azide ions and their surrounding water molecules in order to gain information about the nature of hydrogen bonding of water to ions. Our findings indicate that the main spectral contribution to the intermolecular cross-peak comes from population transfer between the asymmetric stretch vibration of azide and the OD-stretch vibration of D(2)O. The azide-bound D(2)O bleach/stimulated emission signal, which is spectrally much narrower than its linear absorption spectrum, shows that the experiment is selective to solvation shell water molecules for population times up to ~500 fs. The waters around the ion are present in an electrostatically better defined environment. Afterwards, ~1 ps, the sample thermalizes and selectivity is lost. On the other hand, the excited state absorption signal of the azide-bound D(2)O is much broader. The asymmetry in spectral width between bleach/stimulated emission versus excited absorption has been observed in very much the same way for isotope-diluted ice Ih, where it has been attributed to the anharmonicity of the OD potential.  相似文献   

2.
3.
4.
The adiabatic electron affinity (AEA) of SF(6) has been calculated near the relativistic CCSDT(Q) basis set limit. Our best theoretical value (1.0340 ±?0.03 eV) is in excellent agreement with the recently revised experimental value of 1.03?±?0.05 eV reported by Troe et al. [J. Chem. Phys. 136, 121102 (2012)]. While our best nonrelativistic, clamped-nuclei, valence CCSD(T) basis set limit value of 0.9058 eV is in good accord with the previously reported CCSD(T)/CBS values, to obtain an accurate AEA, several additional contributions need to be taken into account. The most important one is scalar-relativistic effects (0.0839 eV), followed by inner-shell correlation (0.0216 eV) and post-CCSD(T) correlation effects (0.0248 eV), the latter almost entirely due to connected quadruple excitations. The diagonal Born-Oppenheimer correction is an order of magnitude less important at -0.0022 eV.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号