首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The absolute cross sections (CSs) for electronic excitations of cytosine by electron impact between 5 and 18 eV were measured by electron-energy-loss (EEL) spectroscopy of the molecule deposited at low coverage on an inert Ar substrate. The lowest EEL features found at 3.55 and 4.02 eV are ascribed to transitions from the ground state to the two lowest triplet 1?(3)A(')(π→π(?)) and 2?(3)A(')(π→π(?)) valence states of the molecule. Their energy dependent CSs exhibit essentially a common maximum at about 6 eV with a value of 1.84×10(-17)?cm(2) for the former and 4.94×10(-17)?cm(2) for the latter. In contrast, the CS for the next EEL feature at 4.65 eV, which is ascribed to the optically allowed transition to the 2?(1)A(')(π→π(?)) valence state, shows only a steep rise to about 1.04×10(-16)?cm(2) followed by a monotonous decrease with the incident electron energy. The higher EEL features at 5.39, 6.18, 6.83, and 7.55 eV are assigned to the excitations of the 3?(3,1)A(')(π→π(?)), 4?(1)A(')(π→π(?)), 5?(1)A(')(π→π(?)), and 6?(1)A(')(π→π(?)) valence states, respectively. The CSs for the 3?(3,1)A(') and 4?(1)A(') states exhibit a common enhancement at about 10 eV superimposed on a more or less a steep rise, reaching, respectively, a maximum of 1.27 and 1.79×10(-16)?cm(2), followed by a monotonous decrease. This latter enhancement and the maximum seen at about 6 eV in the lowest triplet states correspond to the core-excited electron resonances that have been found by dissociative electron attachment experiments with cytosine in the gas phase. The weak EEL feature found at 5.01 eV with a maximum CS of 3.8×10(-18)?cm(2) near its excitation threshold is attributed to transitions from the ground state to the 1?(3,1)A(")(n→π(?)) states. The monotonous rise of the EEL signal above 8 eV is attributed to the ionization of the molecule. It is partitioned into four excitation energy regions at about 8.55, 9.21, 9.83, and 11.53 eV, which correspond closely to the ionization energies of the four highest occupied molecular orbitals of cytosine. The sum of the ionization CS for these four excitation regions reaches a maximum of 8.1×10(-16)?cm(2) at the incident energy of 13 eV.  相似文献   

2.
The role of triplet states in the UV photodissociation of N(2)O is investigated by means of quantum mechanical wave packet calculations. Global potential energy surfaces are calculated for the lowest two (3)A' and the lowest two (3)A' states at the multi-reference configuration interaction level of electronic structure theory using the augmented valence quadruple zeta atomic basis set. Because of extremely small transition dipole moments with the ground electronic state, excitation of the triplet states has only a marginal effect on the far red tail of the absorption cross section. The calculations do not show any hint of an increased absorption around 280 nm as claimed by early experimental studies. The peak observed in several electron energy loss spectra at 5.4 eV is unambiguously attributed to the lowest triplet state 1(3)A'. Excitation of the 2(1)A' state and subsequent transition to the repulsive branch of the 2(3)A' state at intermediate NN-O separations, promoted by spin-orbit coupling, is identified as the main pathway to the N(2)((1)Σ(g)(+))+O((3)P) triplet channel. The yield, determined in two-state wave packet calculations employing calculated spin-orbit matrix elements, is 0.002 as compared to 0.005 ± 0.002 measured by Nishida et al. [J. Phys. Chem. A 108, 2451 (2004)].  相似文献   

3.
UV absorption cross section of CO(2) is studied using high level ab initio quantum chemistry for electrons and iterative quantum dynamics for nuclear motion on interacting global full dimensional potential energy surfaces. Six electronic states-1, 2, 3(1)A(') and 1, 2, 3(1)A(")-are considered. At linearity, they correspond to the ground electronic state X?(1)Σ(g) (+) and the optically forbidden but vibronically allowed valence states 1(1)Δ(u), 1(1)Σ(u) (-), and 1(1)Π(g). In the Franck-Condon region, these states interact via Renner-Teller and conical intersections and are simultaneously involved in an intricate network of non-adiabatic couplings. The absorption spectrum, calculated for many rotational states, reproduces the distinct two-band shape of the experimental spectrum measured at 190 K and the characteristic patterns of the diffuse structures in each band. Quantum dynamics unravel the relative importance of different vibronic mechanisms, while metastable resonance states, underlying the diffuse structures, provide dynamically based vibronic assignments of individual lines.  相似文献   

4.
Adiabatic potential energy surfaces for the six lowest singlet electronic states of N(2)O (X (1)A('), 2 (1)A('), 3 (1)A('), 1 (1)A("), 2 (1)A(") and 3 (1)A(")) have been computed using an ab initio multireference configuration interaction (MRCI) method and a large orbital basis set (aug-cc-pVQZ). The potential energy surfaces display several symmetry related and some nonsymmetry related conical intersections. Total photodissociation cross sections and product rotational state distributions have been calculated for the first ultraviolet absorption band of the system using the adiabatic ab initio potential energy and transition dipole moment surfaces corresponding to the lowest three excited electronic states. In the Franck-Condon region the potential energy curves corresponding to these three states lie very close in energy and they all contribute to the absorption cross section in the first ultraviolet band. The total angular momentum is treated correctly in both the initial and final states. The total photodissociation spectra and product rotational distributions are determined for N(2)O initially in its ground vibrational state (0,0,0) and in the vibrationally excited (0,1,0) (bending) state. The resulting total absorption spectra are in good quantitative agreement with the experimental results over the region of the first ultraviolet absorption band, from 150 to 220 nm. All of the lowest three electronically excited states [(1)Sigma(-)(1 (1)A(")), (1)Delta(2 (1)A(')), and (1)Delta(2 (1)A("))] have zero transition dipole moments from the ground state [(1)Sigma(+)(1 (1)A('))] in its equilibrium linear configuration. The absorption becomes possible only through the bending motion of the molecule. The (1)Delta(2 (1)A('))<--X (1)Sigma(+)((1)A(')) absorption dominates the absorption cross section with absorption to the other two electronic states contributing to the shape and diffuse structure of the band. It is suggested that absorption to the bound (1)Delta(2 (1)A(")) state makes an important contribution to the experimentally observed diffuse structure in the first ultraviolet absorption band. The predicted product rotational quantum state distribution at 203 nm agrees well with experimental observations.  相似文献   

5.
Multireference configuration interaction (MRCI) calculations were performed for vertical excitation energies and potential curves of N(2)O(4) in D(2h) symmetry using the TZVPP basis set with diffuse functions on the nitrogens. The strong absorption of N(2)O(4) around 185 nm is assigned to the transition from the ground state to 1?(1)B(1u) (σ(O)→σ(?) (N-N)) rather than 1?(1)B(2u) (π(O)→π(?) (NO(2) ),n→σ(?) (N-N)), as previously assumed. (N(2)O(4) is placed in the yz-plane, with N-N along z.) Transition to 1?(1)B(1u) is calculated to have an oscillator strength f=0.71 and is z-polarized, in agreement with the experimental observations. Another state, 2?(1)B(2u), lies close by, however, at a much lower f-value. The weak absorption around 340 nm is assigned to 1?(1)B(3u). Excitation to 1?(1)B(2u) is calculated at 227 nm. There is no clear assignment of a state for the observed shoulder around 260 nm. TD-DFT (time-dependent density functional theory) vertical excitation energies are close to MRCI values. MRCI singlet and triplet potential curves for the dissociation N(2)O(4)→2NO(2), combined with a table of NO(2) states correlating with those of N(2)O(4), indicate possible products of photodissociation at various wavelengths. The extensive literature on the photodissociation of N(2)O(4) is reviewed. DFT geometry optimizations have been performed on low-lying singlet and triplet states.  相似文献   

6.
The effect of vibrational excitation on the photodissociation cross section of ozone in the Hartley continuum is examined. The calculations make use of newly computed potential energy and transition dipole moment surfaces. The initial vibrational states of the ozone are computed using grid based techniques and the first few ab initio computed vibrational energy level spacings agree to within 10 cm(-1) with experimental values. The computed total absorption cross sections arising from different initial vibrational states of ozone are discussed in the light of the nature of the transition dipole moment surface. The computed cross section for excitation from the ground vibrational-rotational state is in good agreement with the experimentally measured cross section. Excitation of the asymmetric stretching vibration of ozone has a marked effect on both the form and magnitude of the photodissociation cross section. The velocity distributions of highly reactive O(1D) atoms arising from the photodissociation process in different wavelength ranges is also presented. The results show that the O(1D) atoms travel with a most probable translational velocity of 2.030 km s(-1) corresponding to a translational energy of 0.342 eV or 33.0 kJ mol(-1).  相似文献   

7.
The first absorption band of OCS (carbonyl sulfide) is analyzed using potential energy surfaces and transition dipole moment functions of the lowest four singlet and the lowest four triplet states. Excitation of the 2 (1)A' state is predominant except at very low photon energies. It is shown that the vibrational structures in the center of the band are due to excitation of the 2 (3)A' triplet state, whereas the structures at very low energies are caused by bending excitation in the potential wells of states 2 (1)A' and 1 (1)A'.  相似文献   

8.
The electronic spectrum of Ni?(H?O) has been measured from 16200 to 18000 cm?1 using photofragment spectroscopy. Transitions to two excited electronic states are observed; they are sufficiently long-lived that the spectrum is vibrationally and partially rotationally resolved. An extended progression in the metal-ligand stretch is observed, and the absolute vibrational quantum numbering is assigned by comparing isotopic shifts between ??Ni?(H?O) and ??Ni?(H?O). Time-dependent density functional calculations aid in assigning the spectrum. Two electronic transitions are observed, from the 2A? ground state (which correlates to the 2D, 3d? ground state of Ni?) to the 32A? and 22A? excited states. These states are nearly degenerate and correlate to the 2F, 3d?4s excited state of Ni?. Both transitions are quite weak, but surprisingly, the transition to the 2A? state is stronger, although it is symmetry-forbidden. The 3d?4s states of Ni? interact less strongly with water than does the ground state; therefore, the excited states observed are less tightly bound and have a longer metal-ligand bond than the ground state. Calculations at the CCSD(T)/aug-cc-pVTZ level predict that binding to Ni? increases the H-O-H angle in water from 104.2 to 107.5° as the metal removes electron density from the oxygen lone pairs. The photodissociation spectrum shows well-resolved rotational structure due to rotation about the Ni-O axis. This permits determination of the spin rotation constants ε(αα)' = -12 cm?1 and ε(αα)' = -3 cm?1 and the excited state rotational constant A' = 14.5 cm?1. This implies a H-O-H angle of 104 ± 1° in the 22A? excited state. The O-H stretching frequencies of the ground state of Ni?(H?O) were measured by combining IR excitation with visible photodissociation in a double resonance experiment. The O-H symmetric stretch is ν?' = 3616.5 cm?1; the antisymmetric stretch is ν?' = 3688 cm?1. These values are 40 and 68 cm?1 lower, respectively, than those in bare H?O.  相似文献   

9.
Electronic states of tetrahydrofuran molecules were studied in the excitation energy range 5.5-10 eV using the technique of electron energy loss spectroscopy in the gas phase. Excitation from the two conformations, C(2) and C(s), of the ground state of the molecule are observed in the measured energy loss spectra. The vertical excitation energies of the (3)(n(o)3s) triplet state from the C(2) and C(s) conformations of the ground state of the molecule are determined to be 6.03 ± 0.02 and 6.25 ± 0.02 eV, respectively. The singlet-triplet energy splitting for the n(o)3s configuration is determined to be 0.31 eV. It is also found that excitation from the C(s) conformation of the ground state has a higher cross section than that from the C(2) conformation.  相似文献   

10.
The reaction N+NO-->N(2)+O was studied by means of the time-dependent real wave-packet (WP) method and the J-shifting approximation. We consider the ground 1 (3)A(") and first excited 1 (3)A(') triplet states, which correlate with both reactants and products, using analytical potential energy surfaces (PESs) recently developed in our group. This work extends our previous quantum dynamics study, and probabilities, cross sections, and rate constants were calculated and interpreted on the basis of the different shapes of the PESs (barrierless 1 (3)A(") and with barrier 1 (3)A(') surfaces, respectively). The WP rate constant (k(1)) shows a weak dependence on T(200-2500 K), as the dominant contribution to reactivity is provided by the barrierless ground PES. There is a good agreement of WP k(1) with the measurements and variational transition state theory (VTST) data, and also between the WP and VTST k(1)(1 (3)A(")) results. Nevertheless, there is a large discrepancy between the WP and VTST k(1)(1 (3)A(')) results. Product state distributions were also calculated for the much more reactive 1 (3)A(") PES. There is an excellent agreement with the experimental average fraction of vibrational energy in N(2)(25+/-3%), the only measured dynamics property of this reaction.  相似文献   

11.
Multireference spin-orbit configuration interaction calculations have been carried out for the valence and low-lying Rydberg states of CH(3)I. Potential energy surfaces along the C-I dissociation coordinate (minimal energy paths with respect to the umbrella angle) have been obtained as well as transition moments for excitation of the Rydberg states. It is shown that the B and C absorption bands of CH(3)I are dominated by the perpendicular (3)R(1),(1)R?(E)←X??A(1) transitions, while the (3)R(2)(E),?(3)R(0(+) )(A(1))←X??A(1) transitions are very weak. It is demonstrated that the bound Rydberg states of the B and C bands are predissociated due to the interaction with the repulsive E and A(2) components of the (3)A(1) state, with the (3)A(1)(E) state being the main decay channel. It is predicted that the only possibility to obtain the I((2)P(3/2)) ground state atoms from the CH(3)I photodissociation in the B band is by interaction of the (3)R(1)(E) state with the repulsive (1)Q(E) valence state at excitation energies above 55,000 cm(-1). The calculated ab initio data are used to analyze the influence of the Rydberg state vibrational excitation on the decay process. It is shown that, in contrast to intuition, excitation of the ν(3) C-I stretching mode supresses the predissociation, whereas the ν(6) rocking vibration enhances the predissociation rate.  相似文献   

12.
We report the measurement of a jet-cooled electronic spectrum of the silicon trimer. Si(3) was produced in a pulsed discharge of silane in argon, and the excitation spectrum examined in the 18 000-20 800 cm(-1) region. A combination of resonant two-color two-photon ionization (R2C2PI) time-of-flight mass spectroscopy, laser-induced fluorescence/dispersed fluorescence, and equation-of-motion coupled-cluster calculations have been used to establish that the observed spectrum is dominated by the 1(3)A(1)" - a? (3)A(2)' transition of the D(3h) isomer. The spectrum has an origin transition at 18,600 ± 4 cm(-1) and a short progression in the symmetric stretch with a frequency of ~445 cm(-1), in good agreement with a predicted vertical transition energy of 2.34 eV for excitation to the 1(3)A(1)" state, which has a calculated symmetric stretching frequency of 480 cm(-1). In addition, a ~505 cm(-1) ground state vibrational frequency determined from sequence bands and dispersed fluorescence is in agreement with an earlier zero-electron kinetic energy study of the lowest D(3h) state and with theory. A weaker, overlapping band system with a ~360 cm(-1) progression, observed in the same mass channel (m/z = 84) by R2C2PI but under different discharge conditions, is thought to be due to transitions from the (more complicated) singlet C(2v) ground state ((1)A(1)) state of Si(3). Evidence of emission to this latter state in the triplet dispersed fluorescence spectra suggests extensive mixing in the excited triplet and singlet manifolds. Prospects for further spectroscopic characterization of the singlet system and direct measurement of the energy separation between the lowest singlet and triplet states are discussed.  相似文献   

13.
The multiphoton absorption properties of the axially substituted tetrapyrazinotetraazaporphyrinato complex Pyz(4)TAPInCl (1) are reported and interpreted. In particular, the nonlinear optical transmission of the complex and the excited states involved in the nonlinear absorption have been determined at the frequency of the second harmonic generation of a Nd:YAG laser in the nanosecond time regime. Pyz(4)TAPInCl has an excited-state absorption cross section larger than its ground state in the 460-540 nm spectral region, and it shows an optical limiting (OL) behavior at 532 nm, which derives from a sequential two-photon absorption with a larger absorption cross section of the excited triplet state with respect to the ground state. It results that the absorption cross section of 1 in the excited triplet state is 7.8 x 10(-18) cm(2) vs 0.9 x 10(-18) cm(2) of the ground state at the wavelength of OL analysis.  相似文献   

14.
We report new fluorescence excitation and single vibronic level emission spectra of the A (1)A(")<-->X (1)A(') system of CHCl. A total of 21 cold bands involving the pure bending levels 2(0) (n) with n=1-7 and combination bands 2(0) (n)3(0) (1)(n=4-7), 2(0) (n)3(0) (2)(n=4-6), 1(0) (1)2(0) (n)(n=5-7), 1(0) (1)2(0) (n)3(0) (1)(n=4-6), and 1(0) (1)2(0) (n)3(0) (2)(n=4) were observed in the 450-750 nm region; around half of these are reported and/or rotationally analyzed here for the first time. Spectra were measured under jet-cooled conditions using a pulsed discharge source, and rotational analysis typically yielded band origins and rotational constants for both isotopomers (CH(35)Cl,CH(37)Cl). The derived A (1)A(") vibrational intervals are combined with results of Chang and Sears to determine the excited state barrier to linearity [V(b)=1920(50) cm(-1)]. The A (1)A(") state C-H stretching frequency is determined here for the first time, in excellent agreement with ab initio predictions. Following our observation of new bands in this system, we obtained the single vibronic level (SVL) emission spectra which probe the vibrational structure of the X (1)A(') state up to approximately 9000 cm(-1) above the vibrationless level. The total number of X (1)A(') levels observed is around three times than that previously reported, and we observe five new a (3)A(") state levels, including all three fundamentals. The results of a Dunham expansion fit of the ground state vibrational term energies, and comparisons with the previous experimental and recent high level ab initio studies, are reported. Our data confirm the previous assignment of the a (3)A(") origin, and our value for T(00)(a-X)=2172(2) cm(-1) is in excellent agreement with theory. By exploiting SVL spectra from excited state levels with K(a) (')=1, we determine the effective rotational constant (A-B) of the triplet origin, also in good agreement with theory. Our results shed new light on the vibrational structure of the X (1)A('), A (1)A("), and a (3)A(") states of CHCl, and, more generally, spin-orbit coupling in the monohalocarbenes.  相似文献   

15.
The electronic and rovibronic structures of the cyclopentadienyl cation (C(5)H(5) (+)) and its fully deuterated isotopomer (C(5)D(5) (+)) have been investigated by pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy and ab initio calculations. The vibronic structure in the two lowest electronic states of the cation has been determined using single-photon ionization from the X (2)E(1) (") ground neutral state and 1+1(') resonant two-photon ionization via several vibrational levels of the A (2)A(2) (") excited state. The cyclopentadienyl cation possesses a triplet ground electronic state (X(+) (3)A(2) (')) of D(5h) equilibrium geometry and a first excited singlet state (a(+) (1)E(2) (')) distorted by a pseudo-Jahn-Teller effect. A complete analysis of the Emultiply sign in circlee Jahn-Teller effect and of the (A+E)multiply sign in circlee pseudo-Jahn-Teller effect in the a(+) (1)E(2) (') state has been performed. This state is subject to a very weak linear Jahn-Teller effect and to an unusually strong pseudo-Jahn-Teller effect. Vibronic calculations have enabled us to partially assign the vibronic structure and determine the adiabatic singlet-triplet interval (1534+/-6 cm(-1)). The experimental spectra, a group-theoretical analysis of the vibronic coupling mechanisms, and ab initio calculations were used to establish the topology of the singlet potential energy surfaces and to characterize the pseudorotational motion of the cation on the lowest singlet potential energy surface. The analysis of the rovibronic photoionization dynamics in rotationally resolved spectra and the study of the variation of the intensity distribution with the intermediate vibrational level show that a Herzberg-Teller mechanism is responsible for the observation of the forbidden a(+) (1)E(2) (')<--A (2)A(2) (") photoionizing transition.  相似文献   

16.
We have calculated electronic transitions for sulfuric acid in the ultraviolet region using a hierarchy of coupled cluster response functions and correlation consistent basis sets. Our calculations indicate that the lowest energy singlet transition occurs at 8.42 eV with an oscillator strength of 0.01. The lowest energy triplet state occurs at 8.24 eV. Thus, the cross section of sulfuric acid in the actinic region is likely to be very small and smaller than the upper limit put on this cross section by previous experimental investigations. We estimate the cross section of sulfuric acid in the atmospherically relevant Lyman-alpha region ( approximately 10.2 eV) to be approximately 6 x 10 (-17) cm (2) molecule (-1), a value approximately 30 times larger than the speculative value used in previous atmospheric simulations. We have calculated the J values for photodissociation of sulfuric acid with absorption of visible, UV, and Lyman-alpha radiation, at altitudes between 30 and 100 km. We find that the dominant photodissociation mechanism of sulfuric acid below 70 km is absorption in the visible region by OH stretching overtone transitions, whereas above 70 km, absorption of Lyman-alpha radiation by high energy Rydberg excited states is the favored mechanism. The low lying electronic transitions of sulfuric acid in the UV region do not contribute significantly to its dissociation at any altitude.  相似文献   

17.
The photodissociation of H(2)Te through excitation in the first absorption band is investigated by means of multireference spin-orbit configuration interaction (CI) calculations. Bending potentials for low-lying electronic states of H(2)Te are obtained in C(2v) symmetry for Te-H distances fixed at the ground state equilibrium value of 3.14a(0), as well as for the minimum energy path constrained to R(1)=R(2). Asymmetric cuts of potential energy surfaces for excited states (at R(1)=3.14a(0) and theta;=90.3 degrees ) are obtained for the first time. It is shown that vibrational structure in the 380-400 nm region of the long wavelength absorption tail is due to transitions to 3A('), which has a shallow minimum at large HTe-H separations. Transitions to this state are polarized in the molecular plane, and this state converges to the excited TeH((2)Pi(1/2))+H((2)S) limit. These theoretical data are in accord with the selectivity toward TeH((2)Pi(1/2)) relative to TeH((2)Pi(3/2)) that has been found experimentally for 355 nm H(2)Te photodissociation. The calculated 3A(')<--XA(') transition dipole moment increases rapidly with HTe-H distance; this explains the observation of 3A(') vibrational structure for low vibrational levels, despite unfavorable Franck-Condon factors. According to the calculated vertical energies and transition moment data, the maximum in the first absorption band at approximately 245 nm is caused by excitation to 4A("), which has predominantly 2(1)A(") ((1)B(1) in C(2v) symmetry) character.  相似文献   

18.
We report joint experimental and theoretical studies of outcomes resulting from the nonreactive quenching of electronically excited OD?A (2)Σ(+) by H(2). The experiments utilize a pump-probe technique to detect the OD?X (2)Π product state distribution under single collision conditions. The OD?X (2)Π products are observed primarily in their lowest vibrational state (v(") = 0) with substantially less population in v(") = 1. The OD?X (2)Π products are generated with a high degree of rotational excitation, peaking at N(") = 21 with an average rotational energy of 4600 cm(-1), and a strong propensity for populating the Π(A(')) Λ-doublet component indicative of alignment of the half-filled pπ orbital in the plane of OD rotation. Branching fraction measurements show that the nonreactive channel accounts for less than 20% of quenching outcomes. Complementary classical trajectory calculations of the postquenching dynamics are initiated from representative points along seams of conical intersections between the ground and excited-state potentials of OD(A (2)Σ(+),X (2)Π) + H(2). Diabatic modeling of the initial momenta in the dynamical calculations captures the key experimental trends: OD?X (2)Π products released primarily in their ground vibrational state with extensive rotational excitation and a branching ratio that strongly favors reactive quenching. The OD?A (2)Σ(+) + H(2) results are also compared with previous studies on the quenching of OH?A (2)Σ(+) + H(2); the two experimental studies show remarkably similar rotational energy distributions for the OH and OD?X (2)Π radical products.  相似文献   

19.
The equilibrium structures and physical properties of the X (1)sigma(+) linear electronic states, linear excited singlet and triplet electronic states of hydroboron monoxide (HBO) (A (1)sigma(-), B (1)delta, a (3)sigma(+), and b (3)delta) and boron hydroxide (BOH) (A (1)sigma(+), B (1)Pi, and b (3)Pi), and their bent counterparts (HBO a (3)A('), b (3)A("), A (1)A("), B (1)A(') and BOH X (1)A('), b (3)A('), c (3)A("), A (1)A('), B (1)A('), C (1)A(")) are investigated using excited electronic state ab initio equation-of-motion coupled-cluster (EOM-CC) methods. A new implementation of open-shell EOM-CC including iterative partial triple excitations (EOM-CC3) was tested. Coupled-cluster wave functions with single and double excitations (CCSD), single, double, and iterative partial triple excitations (CC3), and single, double, and full triple excitations (CCSDT) are employed with the correlation-consistent quadruple and quintuple zeta basis sets. The linear HBO X (1)sigma(+) state is predicted to lie 48.3 kcal mol(-1) (2.09 eV) lower in energy than the BOH X (1)sigma(+) linear stationary point at the CCSDT level of theory. The CCSDT BOH barrier to linearity is predicted to lie 3.7 kcal mol(-1) (0.16 eV). With a harmonic zero-point vibrational energy correction, the HBO X (1)sigma(+)-BOH X (1)A(') energy difference is 45.2 kcal mol(-1) (1.96 eV). The lowest triplet excited electronic state of HBO, a (3)A('), has a predicted excitation energy (T(e)) of 115 kcal mol(-1) (4.97 eV) from the HBO ground state minimum, while the lowest-bound BOH excited electronic state, b (3)A('), has a T(e) of 70.2 kcal mol(-1) (3.04 eV) with respect to BOH X (1)A('). The T(e) values predicted for the lowest singlet excited states are A (1)A(")<--X (1)sigma(+)=139 kcal mol(-1) (6.01 eV) for HBO and A (1)A(')<--X (1)A(')=102 kcal mol(-1) (4.42 eV) for BOH. Also for BOH, the triplet vertical transition energies are b (3)A(')<--X (1)A(')=71.4 kcal mol(-1) (3.10 eV) and c (3)A(")<--X (1)A(')=87.2 kcal mol(-1) (3.78 eV).  相似文献   

20.
Transition probabilities were evaluated for the X (1)Sigma(+)-A (1)Pi system of AlNC and AlCN isomers to analyze photoabsorption and fluorescence spectra. The global potential energy surfaces (PESs) of the X (1)Sigma(+) and A (1)Pi (1 (1)A("),2 (1)A(')) electronic states were determined by the multireference configuration interaction calculations with the Davidson correction. Einstein's B coefficients were computed by quantum vibrational calculations using the three-dimensional PESs of these states and the electronic transition moments for the X-1 (1)A(") and X-2 (1)A(') systems. Einstein's B coefficients obtained for AlNC or AlCN exhibit that the Al-N or Al-C stretching mode is strongly enhanced in the transition. The absorption and fluorescence spectra calculated for the X-1 (1)A(") and X-2 (1)A(') systems are discussed comparing with the observed photoexcitation and fluorescence spectra. The lifetimes for the several vibrational levels of the A (1)Pi state were calculated to be ca. 7 ns for AlNC and 21-24 ns for AlCN from the fluorescence decay rates of the 1 (1)A(")-X and 2 (1)A(')-X emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号