首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The precise molecular structure of organically modified mineral surfaces is still not well understood. To establish a relation between experimental observations and underlying molecular structure, we performed Monte Carlo simulations of the aggregation behavior of alkyltrimethylammonium surfactants (C(n)TMA(+)) at the interface between C(n)TMACl solution and cleaved K(+)-muscovite. The structures were examined with regard to the influence of varying alkyl chain length n (n = 8, 12, 16) and surface coverage of C(n)TMA(+) ions. The simulation results indicate that the water film structure at the muscovite surface is considerably influenced by the adsorption of C(n)TMA(+). A fraction of the C(n)TMA(+) ions forms inner-sphere and outer-sphere adsorption complexes with nitrogen-surface distances of 3.3-3.8 and 5.5-8.4 ?, respectively. The simulated monolayer aggregates exhibit thicknesses of 31-35, 22-27, and ~18 ? for C(16)TMA(+), C(12)TMA(+), and C(8)TMA(+), respectively. C(16)TMA(+) and C(12)TMA(+) ions form bilayer aggregates, which show a strong interdigitation of the two opposing layers composing them. The aggregate thicknesses equal 35-39 and 30-35 ?, respectively, and are in agreement with available experimental data. In contrast, the short-chained C(8)TMA(+) ions do not form bilayer aggregates. In agreement with previous experimental studies, the alkyl chains of the aggregated ions show high conformational order markedly decreasing with decreasing chain length. We suggest that the simulated structures represent C(n)TMA(+) aggregates, which are formed on muscovite during the experimentally observed initial equilibration phase characterized by the presence of inorganic ions within the aggregates.  相似文献   

2.
A surface counterion titration method was used to monitor the interaction of monovalents cations (Li(+), Na(+), TMA(+)) with the surface of alumina-coated TiO(2) particles in concentrated media at different pH and electrolyte concentrations. This method allows measuring separately the negative and positive contribution to the surface charge. It showed that Cl(-) and TMA(+) are indifferent ions, but Li(+) and Na(+) specifically adsorb on the non-ionized alumina surface sites. The binding sequence of cations is Li(+)>Na(+)>TMA(+) at all ionic strengths investigated and is consistent with the structure-making and structure-breaking model developed a few decades ago. Polyacrylic acid (PAA) previously neutralized with the corresponding hydroxide (LiOH, NaOH, TMAOH) has been adsorbed on the alumina surface at different pH. The polymer counterion has a significant influence on the polymer adsorption. The sequence of the surface coverage as a function of the polymer counterion follows the order Li-PAA > Na-PAA > TMA-PAA. The much higher surface coverage with Li-PAA and Na-PAA compared to TMA-PAA is explained by the specific adsorption of Li-PAA and Na-PAA on the nonionized alumina surface sites, the same way LiCl and NaCl do.  相似文献   

3.
Montmorillonite monoionic forms with alkali metal and NH(4)(+)-cations were prepared by ion exchange. The hydration properties and binding of the ions to montmorillonite surface and the swelling properties of the mineral specimens were analyzed. Whereas Na(+)- and Li(+)-ions were fully hydrated over a large range of conditions, large size K(+), NH(4)(+), and mainly Rb(+) and Cs(+) ions were apt to bind directly to the oxygen atoms on the mineral surface. The forms with large ions exhibited reduced hydration and swelling and the absence of macroscopic swelling of the respective aqueous colloids. The interaction of laser dye rhodamine 6G (R6G) in montmorillonite colloids was investigated by absorption and steady-state fluorescence spectroscopies. Significant effects of the properties of both the inorganic ions and swelling properties of colloidal dispersions on R6G molecular aggregation were observed. Large amounts of the molecular aggregates were formed in the colloids of Na(+)- and Li(+)-montmorillonites. The aggregates absorbed light at significantly lower wavelengths (~460 nm) with respect to the light absorption by monomers (535 nm). Fluorescence spectroscopy provided a key evidence for the assignment of the type of the aggregates: The emission of the aggregates at relatively low energies proved these assemblies are rather a mixed H-/J-type than ideal H-aggregates. The presence of parent inorganic cations of larger size led to a significant lowering of the amount of the R6G aggregates in favor of the monomers. Investigations of the evolution of the dye aggregation with time indicated basic features of dye aggregation reaction: The size of parent inorganic ions did not affect the reaction mechanism, but rather limited the extent of the reaction. Probably the forms with large inorganic ions, such as Rb(+) and Cs(+), did not provide sufficient surface for the formation of the large size assemblies of the dye. This property can be explained in terms of strong association of the large alkali metal ions to clay mineral surface, as well as to reduced swelling in the colloidal systems of respective forms.  相似文献   

4.
The equilibrium adsorption behavior of two n-alkyl-beta-D-glucosides (octyl (C8G1) and decyl (C10G1)) and four n-alkyl-beta-D-maltosides (octyl (C8G2), decyl (C10G2), dodecyl (C12G2), and tetradecyl (C14G2)) from aqueous solution on a titania surface, as measured by ellipsometry, has been investigated. The main focus has been on the effect of changes in the alkyl chain length and headgroup polymerization, but a comparison with their adsorption on the silica/water and air/water interfaces is also presented. Some comparison with the corresponding adsorption of ethylene oxide surfactants, in particular C10E6 and C12E6, is given as well. For all alkyl polyglucosides, the maximum adsorbed amount on titania is reached slightly below the critical micelle concentration (cmc), where it levels off to a plateau and the amount adsorbed corresponds roughly to a bilayer. However, there is no evidence that this is the actual conformation of the surfactant assemblies on the surface, but the surfactants could also be arranged in a micellar network. On hydrophilic silica, the adsorbed amount is a magnitude lower than on titania, corresponding roughly to a layer of surfactants lying flat on the surface. A change in the alkyl chain length does not result in any change in the plateau molar adsorbed amount at equilibrium; however, the isotherm slope for the alkyl maltosides increases with increasing chain length. Headgroup polymerization on the other hand affects the adsorbed amount. The alkyl glucosides start adsorbing at lower bulk concentrations than the maltosides and equilibrate at higher adsorbed amounts above the cmc. When compared with the ethylene oxide (EO) surfactants, it is confirmed that the EO surfactants hardly adsorb on titania, since the measured changes in the ellipsometric angles are within the noise level. They do, however, adsorb strongly on silica.  相似文献   

5.
Adsorption of phenanthrene on organoclays from distilled and saline water   总被引:10,自引:0,他引:10  
Isotherms of phenanthrene adsorption on different organoclay complexes were obtained using the HPLC technique to understand the adsorption behavior and to characterize the effect of sodium chloride (NaCl) on the adsorption. The adsorbed amounts of phenanthrene on montmorillonite exchanged by organic cations such as tetraheptylammonium, benzyltrimethylammonium, hexadecyltrimethylammonium, or tetraphenylphosphonium were several times higher than those obtained using montmorillonite clay without surface modification. At the same equilibrium concentration, the adsorbed amount of phenanthrene is higher on clay modified with benzyltrimethylammonium than on clay modified with hexadecyltrimethylammonium or other cations. Adsorption of phenanthrene on clay modified with benzyltrimethylammonium increased dramatically as the concentration of NaCl increased up to 150 g/l in the aqueous solution. The shape of the curves obtained can be classified as S-type. The adsorption data obtained from salinity experiments support a mathematical model that links the Langmuir constant with the salinity constant. This model may be useful to predict the equilibrium concentration of a contaminant in saline solution. FTIR studies showed strong interactions between the aromatic rings of phenanthrene and the preadsorbed benzyltrimethylammonium on clay surfaces.  相似文献   

6.
Clay mineral colloids play important roles in the adsorption of polar organic contaminants in the environment. Similarly, cyclodextrins (CD) can entrap poorly water-soluble organic compounds. A combination of CDs and clay minerals affords great opportunities to investigate simultaneously complexation and adsorption processes involving organic contaminants. In this work, we investigated in situ the extent of adsorption and/or complexation of a molecular probe, methyl orange (MO), in CD/sodium montmorillonite systems using UV-visible spectroscopy. The anion form of MO interacts with the clay surface via cationic bridges, whereas the cation form is weakly adsorbed by a cation-exchange mechanism. Further, in acidic media, there is a local competition between MO and the montmorillonite surface for H(+) ions. This inhibits protonation of MO in the immediate vicinity of the clay. The presence of CDs, however, perturbs the favored process of proton scavenging by the clay. In particular, in betaCD-clay systems, betaCD-complexed MO can compete successfully with the clay for H(+) ions. The shielding effect of betaCD appears to play a key role in preventing the deprotonation of complexed MO. Copyright 2001 Academic Press.  相似文献   

7.
Chiral phenylethyl alkylammonium montmorillonites were prepared by ion exchange of Na montmorillonite (from Wyoming). The structure of chiral montmorillonite organocomplexes was studied in the dry state by X-ray diffraction, IR spectroscopy and 13C cross-polarized MAS NMR and after swelling by X-ray diffraction. The phenylethylammonium ions are intercalated in montmorillonite in a monolayer structure, while higher derivatives containing alkyl chains with lengths of n c=10−16 take up a bilayer orientation. The hydrophobized clay mineral is readily dispersed in organic solvents, for example in ethanol, toluene and their binary mixtures. Due to selective adsorption, the liquids penetrate into the interlamellar space under significant interlayer expansion producing a great variety of alkyl chain orientations within the interlamellar space, depending on the length of alkyl chains and on the mixture composition. Such interlamellar spaces are possible chiral nanoreactors with adjustable volume and may be prospectively utilized for shape-selective catalytic reactions and the production of enantiomers. Received: 20 July 1998 Accepted in revised form: 22 September 1998  相似文献   

8.
A series of zwitterionic surfactant-modified montmorillonites (ZSMMs) were synthesized using montmorillonite and three zwitterionic surfactants with different alkyl chain lengths at different concentrations [0.2-4.0 cation exchange capacity (CEC)]. These ZSMMs were characterized by X-ray diffraction (XRD), thermo-gravimetric analysis and differential thermo-gravimetric (TG/DTG) analyses. The zwitterionic surfactant could be intercalated into the interlayer spaces of montmorillonites and causing interlayer space-swelling. From XRD measurements, the amount of the surfactants loaded and the basal spacing increased with surfactant concentration and alkyl chain length. One endothermic DTG peak occurred at ~390 °C, which was assigned to the decomposition of the zwitterionic surfactant on the organo-montmorillonites from 0.2 to 0.6 CEC. When the surfactant loading was increased, a new endothermic peak appeared at ~340 °C. From the microstructures of these ZSMMs, the mechanism of zwitterionic surfactant adsorption was proposed. At relatively low loadings of the zwitterionic surfactant, most of surfactants enter the spacing by an ion-exchange mechanism and are adsorbed onto the interlayer cation sites. When the concentration of the zwitterionic surfactant exceeds the CEC of montmorillonite, the surfactant molecules then adhere to the surface-adsorbed surfactant. Some surfactants enter the interlayers, whereas the others are attached to the clay surface. When the concentration of surfactant increases further beyond 2.0 CEC, the surfactants may occupy the inter-particle space within the house-of-cards aggregate structure.  相似文献   

9.
The sorption of nitrobenzene andn-pentanol from dilute aqueous solution on swelling clay minerals and their organophilized derivatives (organo clays) was studied. Adsorption excess isotherms were obtained by the immersion method. The basal spacings of the clay minerals were determined by X-ray diffraction measurements. By combining these two independent methods, composition and structure of the interlamellar space could be calculated. On the hydrophilic surface of montmorillonite negative adsorption of the organic component was observed at low molar fractions of nitrobenzene or pentanol, i.e., water was preferentially adsorbed. On organophilized montmorillonite and vermiculite adsorption of nitrobenzene and pentanol was positive over the whole range of liquid composition. The amount of interlamellar alkyl chains which is determined by the surface charge of clay mineral inversely affected the adsorption of both solutes.  相似文献   

10.
Ca-montmorillonite (Ca-Mont) was exchanged with two quaternary amines, tetramethylammonium (TMA) chloride and hexadecyltrimethylammonium (HDTMA) bromide, to study the surfactant ion exchange effect on the pore structure, surface characteristics, and adsorption properties of montmorillonite. The revolution of both the surface area and pore structure of montmorillonite was characterized based on classical and fractal analyses of the nitrogen isotherms as well as the XRD patterns. The change of surface characteristics was identified from FTIR patterns and zeta-potential plots. The adsorption isotherms of acid dye, Amido Naphthol Red G (AR1), were then measured to identify the effects of the ion-exchange process on the adsorption properties of montmorillonite. It was found that the exchange processes might induce an increase or decrease in the surface area, pore size, pore volume, and surface fractal dimension D of montmorillonite, depending on the size, the molecular arrangement, and the degree of hydration of the exchanged ion in the clay. On the other hand, it was also found that the hydrophobic bonding by conglomeration of large C(16) alkyl groups associated with HDTMA could cause positive charge development on the surface of montmorillonite, which was not observed for TMA-modified montmorillonite (TMM). The effects of the alteration of the surface characteristics of montmorillonites on their adsorption selectivity for acid dye were discussed.  相似文献   

11.
The surface behavior of a range of surfactant [Ru(bipy)(2)(p,p'-dialkyl-2,2'-bipy)]Cl(2) complexes, which we express as Ru(q)(p)C(n) where n is the alkyl chain length, p refers to the substitution position on the bipyridine ligand (=4 or 5), and q (=1 or 2) is the number of substituted alkyl chains, has been examined using neutron reflectometry. The adsorption of the single-chain Ru(1)(4)C(19) and Ru(1)(5)C(19) surfactants is strongly time-dependent, taking in excess of 10 h to form an equilibrium film. It is suggested that the slow adsorption rate is related to the alkyl chain length rather than the low monomer concentration present in the solutions. At concentrations below the critical micelle concentration (cmc) of Ru(1)(4)C(19), the film of Ru(1)(5)C(19) is denser than that of Ru(1)(4)C(19) at comparable concentration, consistent with the mass densities of the bulk solids, whereas at concentrations close to and greater than this cmc the converse pertains. Close to the cmc, the adsorbed films possess an average area per molecule significantly less than the nominal headgroup area of the surfactants (approximately 30 angstroms(2) compared with approximately 100 angstroms(2)). This fact together with consideration of the thickness and density of the adsorbed films leads to the conjecture that surface aggregates may be the adsorbing units. The adsorption of the double-chain surfactant Ru(1)(p)C(19), in contrast to the behavior of the Ru(1)(p)C(19) surfactants, is weak and independent of time. This behavior is attributed to the alkyl chain orientation. The adsorption behavior of a racemic mixture of the Delta and Lambda isomers of Ru(2)(4)C(19) has been compared with that of the Delta isomer. It is found that the film of racemic material is more closely packed than that of the resolved complex.  相似文献   

12.
In this work, molecular dynamics simulation was applied to investigate the adsorption of Tetrachlorodibenzo-p-Dioxin (TCDD) on tetramethylammonium (TMA) and tetrapropylammonium (TPA) modified montmorillonite, with the aim of providing novel information for understanding the adsorptive characteristics of organo-montmorillonite toward organic contaminants. The simulation results showed that on both outer surface and interlayer space of TPA modified montmorillonite (TPA-mont), TCDD was adsorbed between the TPA cations with the molecular edge facing siloxane surface. Similar result was observed for the adsorption on the outer surface of TMA modified montmorillonite (TMA-mont). These results indicated that TCDD had stronger interaction with organic cation than with siloxane surface. While in the interlayer space of TMA-mont, TCDD showed a coplanar orientation with the siloxane surfaces, which could be ascribed to the limited gallery height within TMA-mont interlayer. Comparing with TMA-mont, TPA-mont had larger adsorption energy toward TCDD but smaller interlayer space to accommodate TCDD. Our results indicated that molecular dynamics simulation can be a powerful tool in characterizing the adsorptive characteristics of organoclays and provided additional proof that for the organo-montmorillonite synthesized with small organic cations, the available interlayer space rather than the attractive force plays the dominant role for their adsorption capacity toward HOCs.  相似文献   

13.
The binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg(2+), Ca(2+), or Sr(2+)) or monovalent (Na(+), K(+), or Rb(+)) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na(+) > K(+) > Rb(+) shows a "reverse" lyotropic trend, while the divalent cations on the same surface exhibit a "regular" lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr(2+) > Ca(2+) > Mg(2+)). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO(-) group and the rutile, helping to "trap" the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO(-) group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.  相似文献   

14.
Smectite that has reacted for 48 h with hexadecyltrimethylammonium (HDTMA) cations equivalent to 0.01-3.0 times the cation exchange capacity (CEC) converts to HDTMA-smectite. The microstructure of this organoclay is observed using X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). When Na cations in the interlayer of clay are exchanged with HDTMA ions, the changes in internal and external surface configuration are augmented by the intercalation of organic surfactants, showing a heterogeneous increase of interlayer spacings. As HDTMA loading increases, the chance of delaminated layers being developed increases locally in the low-charge interlayer regions by the sufficient adsorption of organic surfactants beyond the CEC due to the tendency of alkyl chain interaction.  相似文献   

15.
The divalent organic cation, methyl green (MG), undergoes a slow transformation (6 h) to a monovalent cation, carbinol (MGOH(+)) upon dilution of its solution (10 mM), or in a buffer at neutral pH. Adsorption isotherms of MG on montmorillonite were determined by two procedures, both of which yield a final pH of suspensions between 7 to 7.4. When the amounts of MG in suspension were lower than the cation-exchange capacity (CEC) of the clay (0.8 mol(c)/kg clay), no measurable amount of MG remained in solution. The maximal amounts of MGOH(+) adsorbed were larger than those of MG(2+), being 1.15 and 0.75 mol MG/kg clay, respectively, corresponding to 140% of the CEC in the first case. On a charge basis the adsorption of added MG(2+) amounts to 185% of the CEC, which raises the possibility that a certain fraction of MG(2+) transformed into the monovalent form during the incubation period, since other divalent organic cations previously studied only adsorbed up to the CEC (paraquat), or slightly above it (diquat). Adsorption of MG on sepiolite (CEC=0.15 mol(c)/kg) further emphasizes the two patterns of its adsorption. The maximal adsorbed amounts of MG(2+) and MGOH(+) were 0.09 and 0.30 mol/kg clay, respectively. X-ray diffraction measurements gave lower values for the basal spacings for montmorillonite-MG(+) than for MGOH(+), suggesting that MG(2+) binds two clay platelets together, as in the case of other divalent cations. A competition for adsorption between MG and the monovalent organic cation, acriflavin (AF), gave lower adsorbed amounts of AF when competing with MG(+), which is interpreted to be due to the smaller basal spacing in this case, which partially inhibits the entry of AF molecules into the interlammelar space. Spectra of montmorillonite-MG particles in the visible range exhibited significant differences between clay-MG and clay-carbinol. Copyright 2000 Academic Press.  相似文献   

16.
The adsorption isotherms of n-decyl-β-D-glucoside (β-C(10)G(1)) as well as various n-alkyl-β-D-maltosides (β-C(n)G(2)) with n=8, 10, 12 and 14 were determined from surface tension measurements. Based on the analysis of the adsorption isotherms, the total free energy change of adsorption was determined and a novel method was proposed to determine the maximum adsorbed amount of surfactant. It can be concluded that the driving force for adsorption first increases with increasing adsorbed amount of the sugar surfactants and then levels off in a plateau. This peculiar behaviour is interpreted as formation of a thin liquid-like alkane film of overlapping alkyl chains at the air/water interface once a certain adsorbed amount is exceeded. The driving force of adsorption depends on the alkyl chain length only and is not affected by the type of the head group. The hydrophobic contribution to the standard free energy change of adsorption was compared with the values of sodium alkylsulfate and alkyltrimethylammonium bromide surfactants. This comparison reveals that the hydrophobic driving force of adsorption is the largest for the sodium alkylsulfates, whereas it is the same for the sugar surfactants and the alkyltrimethylammonium bromides.  相似文献   

17.
18.
Organically modified clay minerals with high thermal stability are critical for synthesis and processing of clay-based nanocomposites. Two series of organo-montmorillonites have been synthesized using surfactants with different alkyl chain length. The organo-montmorillonites were characterized by X-ray diffraction and differential thermogravimetry, combining with molecule modelling. For surfactant with relatively short alkyl chain, the resultant organo-montmorillonite displays a small maximum basal spacing (ca. 1.5?nm) and most surfactants intercalate into montmorillonite interlayer spaces as cations with a small amount of surfactant molecules loaded in the interparticle pores with ??house-of-cards?? structure. However, for surfactant with relatively long alkyl chain, the resultant organo-montmorillonite displays a large maximum basal spacing (ca. 4.1?nm) and the loaded surfactants exist in three formats: intercalated surfactant cations, intercalated surfactant molecules (ionic pairs), and surfactant molecules in interparticle pores. The surfactant molecules (ionic pairs) in interparticle pores and interlayer spaces will be evaporated around the evaporation temperature of the neat surfactant while the intercalated surfactant cations will be evaporated/decomposed at higher temperature.  相似文献   

19.
The effects of replacing the native Na(+) counter ions associated with the clay platelets by various other cations on the swelling behavior of nanocomposite (NC) gels consisting of an organic (polymer)/inorganic (clay) network were investigated. The negative surface charge of the clay platelet conferred an ionic nature on the NC gels making them a type of polyelectrolyte gel; consequently, the swelling behavior of the NC gels was strongly influenced by the valence of the co-existing counter ions. NC gels containing monovalent cations such as Na(+), K(+) and Li(+) exhibited large swellings and subsequent deswelling in water after attaining maximum degrees of swelling. In contrast, introduction of multivalent cations such as Ca(2+), Mg(2+), and Al(3+) into NC gels depressed markedly both the swelling and subsequent deswelling. The decreased swelling and suppressed deswelling with multivalent ions were strongly influenced by the initial gel state and result from the formation of additional cross-links through ionic interactions between the clay platelets and the multivalent cations. Also, the similar swelling behaviors were observed for all NC gels with different clay concentration. Further, reversible absorption/desorption and selective absorption of multivalent cations were observed for the NC gels examined.  相似文献   

20.
The effect of short alkyl chain cations on the modification of the structure, surface and textural properties of organo-montmorillonites upon their acid treatment was investigated. Samples prepared from Ca-SAz montmorillonite and tetramethylammonium (Me(4)N(+)-), tetraethylammonium (Et(4)N(+)-), tetrapropylammonium (Pr(4)N(+)-) and tetrabutylammonium (Bu(4)N(+)-) salts were treated in 6 M HCl at 80 °C for 2-8 h and analyzed by different methods. Acid treatment of organo-montmorillonites caused gradual release of Al and Mg from the octahedral sheets and destruction of their layered structure. The extent of the changes depended significantly on the size of organo-cation. While large plate-like particles of Ca-SAz and Me(4)N-SAz were disintegrated during acid treatment and smaller fine grains were created, the morphology of Bu(4)N-SAz was modified only slightly. Pore size analysis showed generation of pore network upon organo-montmorillonites dissolution. After longer acid attack, pore volume increased and pore size distribution curves were shifted to pores with diameter above 25 ?. The surface area of acid-treated samples increased due to destruction of the montmorillonite layers and formation of the SiO(2)-rich reaction product. The highest value 475 m(2)/g was observed for Me(4)N-SAz treated 4 h. Surface area of Et(4)N-SAz, Pr(4)-SAz and Bu(4)N-SAz was 441, 419 and 293 m(2)/g, respectively, after 8 h treatment. Similar decomposition level was observed for Ca-SAz and Me(4)N-SAz, and less destruction was found for Et(4)N-SAz, Pr(4)-SAz and very low for Bu(4)N-SAz. Though Bu(4)N(+) is short alkyl chain cation, its size is large enough to cover the inner and outer surfaces of montmorillonite and thus to protect the clay layers from acid attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号