首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 655 毫秒
1.
We report the partitioning of the interaction-induced static electronic dipole (hyper)polarizabilities for linear hydrogen cyanide complexes into contributions arising from various interaction energy terms. We analyzed the nonadditivities of the studied properties and used these data to predict the electric properties of an infinite chain. The interaction-induced static electric dipole properties and their nonadditivities were analyzed using an approach based on numerical differentiation of the interaction energy components estimated in an external electric field. These were obtained using the hybrid variational-perturbational interaction energy decomposition scheme, augmented with coupled-cluster calculations, with singles, doubles, and noniterative triples. Our results indicate that the interaction-induced dipole moments and polarizabilities are primarily electrostatic in nature; however, the composition of the interaction hyperpolarizabilities is much more complex. The overlap effects substantially quench the contributions due to electrostatic interactions, and therefore, the major components are due to the induction and exchange-induction terms, as well as the intramolecular electron-correlation corrections. A particularly intriguing observation is that the interaction first hyperpolarizability in the studied systems not only is much larger than the corresponding sum of monomer properties, but also has the opposite sign. We show that this effect can be viewed as a direct consequence of hydrogen-bonding interactions that lead to a decrease of the hyperpolarizability of the proton acceptor and an increase of the hyperpolarizability of the proton donor. In the case of the first hyperpolarizability, we also observed the largest nonadditivity of interaction properties (nearly 17%) which further enhances the effects of pairwise interactions.  相似文献   

2.
In this article, a polarizable dipole–dipole interaction model is established to estimate the equilibrium hydrogen bond distances and the interaction energies for hydrogen‐bonded complexes containing peptide amides and nucleic acid bases. We regard the chemical bonds N? H, C?O, and C? H as bond dipoles. The magnitude of the bond dipole moment varies according to its environment. We apply this polarizable dipole–dipole interaction model to a series of hydrogen‐bonded complexes containing the N? H···O?C and C? H···O?C hydrogen bonds, such as simple amide‐amide dimers, base‐base dimers, peptide‐base dimers, and β‐sheet models. We find that a simple two‐term function, only containing the permanent dipole–dipole interactions and the van der Waals interactions, can produce the equilibrium hydrogen bond distances compared favorably with those produced by the MP2/6‐31G(d) method, whereas the high‐quality counterpoise‐corrected (CP‐corrected) MP2/aug‐cc‐pVTZ interaction energies for the hydrogen‐bonded complexes can be well‐reproduced by a four‐term function which involves the permanent dipole–dipole interactions, the van der Waals interactions, the polarization contributions, and a corrected term. Based on the calculation results obtained from this polarizable dipole–dipole interaction model, the natures of the hydrogen bonding interactions in these hydrogen‐bonded complexes are further discussed. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The interaction energy of several conformations of the nitromethane dimer is investigated at the SCF level. The dispersion energy and counterpoise correction are computed for certain relative orientations of the monomers. Fourth-order many body perturbation theory SDQ-MBPT(4) energies are reported for selected points. Double zeta and double zeta plus polarization basis sets were used. All calculations were done with the monomer fixed at the isolated monomer geometry. Interaction energies as large as 6 kcal/mol are found at minima of hydrogen bonding orientations.  相似文献   

4.
The potential energy surfaces of stacked uracil dimer (U/U) and stacked thymine dimer (T/T) have been explored at the counterpoise (CP)‐corrected M06‐2X/6‐31+G(d) level of theory, in the gas phase and in solution (with water and, for U/U, 1,4‐dioxane as the solvents) modeled by a continuum solvent using the polarizable continuum model. Potential energy scans were created by rotation of one monomer around its center‐of‐mass, whereas the other monomer remained still. Both face‐to‐back (one molecule exactly on top of the other) and face‐to‐face (one base molecule flipped by 180°) structures were considered. Five or six (dependent on whether CP correction is included or not) stacked uracil dimer minima and six stacked thymine dimer minima were located. A number of transition states on the U/U and T/T potential energy surfaces were likewise identified. The general effect of the continuum solvent is a flattening of the potential energy surface. Comparison of the gas‐phase M06‐2X/6‐31+G(d) U/U interaction energies with estimated CCSD(T)/complete basis set values (where available) show the excellent performance of this functional for stacking energies. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The appropriateness of the use of the counterpoise correction for the basis set superposition error in SCF calculations of the interaction energies for pairs of aliphatic amino acids is analyzed in this paper. Our results show that for this type of molecule where the magnitude of the basis set superposition error can become quite big, the use of the counterpoise method provides interaction energies in good agreement with near Hartree-Fock values. The inaccuracies associated with the counterpoise method are much less important compared with the basis set superposition error itself. It is shown that the use of a well-balanced minimal basis set together with the counterpoise method is a good compromise (quality versus computational cost) for calculating interaction energies in systems involving molecules of biological interest.  相似文献   

6.
Basis set superposition effects which are not removed by the counterpoise correction are shown to modify the electric properties of interacting subsystems and influence indirectly the calculated interaction energies. The role of these higher-order basis set superposition effects is illustrated by the calculation of the water molecule dipole moment and polarizability in the basis set of the water dimer.  相似文献   

7.
Configuration interaction and coupled cluster calculations are reported for He2 using various orbital basis sets of the d-aug-AVXZ type, with the results being extrapolated to the one electron basis set limit both with counterpoise and without counterpoise correction. A generalized uniform singlet- and triplet-pair extrapolation scheme has been utilized for such a purpose. Using appropriate corrections to mimic full configuration interaction, the energies were predicted in excellent agreement with the best available estimates. The results also suggest that extrapolation to the complete basis set limit may be a general alternative to the counterpoise correction that yields a more accurate potential energy while being more economical.  相似文献   

8.
In the present paper we analyze basis set superposition error (BSSE) removal methods from many-body components of interaction-induced electric properties. The Valiron–Mayer function counterpoise (VMFC), site–site function counterpoise (SSFC) and TB methods have been employed in order to obtain the incremental optical components of linear hydrogen fluoride clusters (HF)n, where n = {3,4}. Following Mierzwicki and Latajka, who have performed similar calculations for the interaction energy, we compare those three methods of eliminating BSSE using several Dunning’s correlation consistent basis sets.  相似文献   

9.
A polarizable empirical force field based on the classical Drude oscillator has been developed for the aliphatic alcohol series. The model is optimized with emphasis on condensed-phase properties and is validated against a variety of experimental data. Transferability of the developed parameters is emphasized by the use of a single electrostatic model for the hydroxyl group throughout the alcohol series. Aliphatic moiety parameters were transferred from the polarizable alkane parameter set, with only the Lennard-Jones parameters on the carbon in methanol optimized. The developed model yields good agreement with pure solvent properties with the exception of the heats of vaporization of 1-propanol and 1-butanol, which are underestimated by approximately 6%; special LJ parameters for the oxygen in these two molecules that correct for this limitation are presented. Accurate treatment of the free energies of aqueous solvation required the use of atom-type specific O(alcohol)-O(water) LJ interaction terms, with specific terms used for the primary and secondary alcohols. With respect to gas phase properties the polarizable model overestimates experimental dipole moments and quantum mechanical interaction energies with water by approximately 10 and 8 %, respectively, a significant improvement over 44 and 46 % overestimations of the corresponding properties in the CHARMM22 fixed-charge additive model. Comparison of structural properties of the polarizable and additive models for the pure solvents and in aqueous solution shows significant differences indicating atomic details of intermolecular interactions to be sensitive to the applied force field. The polarizable model predicts pure solvent and aqueous phase dipole moment distributions for ethanol centered at 2.4 and 2.7 D, respectively, a significant increase over the gas phase value of 1.8 D, whereas in a solvent of lower polarity, benzene, a value of 1.9 is obtained. The ability of the polarizable model to yield changes in dipole moment as well as the reproduction of a range of condensed phase properties indicates its utility in the study of the properties of alcohols in a variety of condensed phase environments as well as representing an important step in the development of a comprehensive force field for biological molecules.  相似文献   

10.
11.
Supermolecular interaction energies are analyzed in terms of the symmetry-adapted perturbation theory and operators defining the inaccuracy of the monomer wave functions. The basis set truncation effects are shown to be of first order in the monomer inaccuracy operators. On the contrary, the usual counterpoise correction schemes are of second order in these operators. Recognition of this difference is used to suggest an approach to corrections for basis-set truncation effects. Also earlier claims--that dimer-centered basis sets may lead to interaction energies free of basis-set superposition effects--are shown to be misleading. According to the present study the basis-set truncation contributions, evaluated by means of the symmetry-adapted perturbation theory with monomer-centered basis sets, provide physically and mathematically justified corrections to supermolecular results for interaction energies.  相似文献   

12.
The O-H stretching vibrational overtone spectrum of the water dimer has been calculated with the dimer modeled as two individually vibrating monomer units. Vibrational term values and absorption intensities have been obtained variationally with a computed dipole moment surface and an internal coordinate Hamiltonian, which consists of exact kinetic energy operators within the Born-Oppenheimer approximation of the monomer units. Three-dimensional ab initio potential energy and dipole moment surfaces have been calculated using the internal coordinates of the monomer units using the coupled cluster method including single, double, and perturbative triple excitations [CCSD(T)] with the augmented correlation consistent valence triple zeta basis set (aug-cc-pVTZ). The augmented correlation consistent valence quadruple zeta basis set (aug-cc-pVQZ), counterpoise correction, basis set extrapolation to the complete basis set limit, relativistic corrections, and core and valence electron correlations effects have been included in one-dimensional potential energy surface cuts. The aim is both to investigate the level of ab initio and vibrational calculations necessary to produce accurate results when compared with experiment and to aid the detection of the water dimer under atmospheric conditions.  相似文献   

13.
14.
We report a study of the electronic dissociation energy of the water dimer using quantum Monte Carlo techniques. We have performed variational quantum Monte Carlo and diffusion quantum Monte Carlo (DMC) calculations of the electronic ground state of the water monomer and dimer using all-electron and pseudopotential approaches. We have used Slater-Jastrow trial wave functions with B3LYP type single-particle orbitals, into which we have incorporated backflow correlations. When backflow correlations are introduced, the total energy of the water monomer decreases by about 4-5 mhartree, yielding a DMC energy of -76.428 30(5) hartree, which is only 10 mhartree above the experimental value. In our pseudopotential DMC calculations, we have compared the total energies of the water monomer and dimer obtained using the locality approximation with those from the variational scheme recently proposed by Casula [Phys. Rev. B 74, 161102(R) (2006)]. The time step errors in the Casula scheme are larger, and the extrapolation of the energy to zero time step always lies above the result obtained with the locality approximation. However, the errors cancel when energy differences are taken, yielding electronic dissociation energies within error bars of each other. The dissociation energies obtained in our various all-electron and pseudopotential calculations range between 5.03(7) and 5.47(9) kcalmol and are in good agreement with experiment. Our calculations give monomer dipole moments which range between 1.897(2) and 1.909(4) D and dimer dipole moments which range between 2.628(6) and 2.672(5) D.  相似文献   

15.
The intermolecular interaction potential of the H2-H2 system was calculated by an ab initio molecular orbital method using several basis sets (up to 6-31 lG(3pd)) with inclusion of the electron correlation correction of the Møller-Plesset perturbation method and the basis set superposition error (BSSE) correction of the counterpoise method in order to evaluate the basis set effect. The calculated interaction energies depend strongly on the basis set used. Whereas the interaction energies of the repulsive and coulombic energy components calculated at the Hartree-Fock level are not affected by a change of basis set, the dispersion energy component depends strongly on the basis set used. Parameters of an exp-6-1 type non-bonding interaction potential were optimized on the basis of the MP4(SDTQ)/6-311G(3p) level intermolecular interaction energies of the H2-H2 system.  相似文献   

16.
Two new prototype delocalized pi[dot dot dot]pi complexes are introduced: the dimers of cyanogen, (N[triple bond]C-C[triple bond]N)(2), and diacetylene, (HC[triple bond]C-C[triple bond]CH)(2). These dimers have properties similar to larger delocalized pi...pi systems such as benzene dimer but are small enough that they can be probed in far greater detail with high accuracy electronic structure methods. Parallel-slipped and T-shaped structures of both cyanogen dimer and diacetylene dimer have been optimized with 15 different procedures. The effects of basis set size, theoretical method, counterpoise correction, and the rigid monomer approximation on the structure and energetics of each dimer have been examined. MP2 and CCSD(T) optimized geometries for all four dimer structures are reported, as well as estimates of the CCSD(T) complete basis set (CBS) interaction energy for every optimized geometry. The data reported here suggest that future optimizations of delocalized pi[dot dot dot]pi clusters should be carried out with basis sets of triple-zeta quality. Larger basis sets and the expensive counterpoise correction to the molecular geometry are not necessary. The rigid monomer approximation has very little effect on structure and energetics of these dimers and may be used without consequence. Due to a consistent cancellation of errors, optimization with the MP2 method leads to CCSD(T)/CBS interaction energies that are within 0.2 kcal mol(-1) of those for structures optimized with the CCSD(T) method. Future studies that aim to resolve structures separated by a few tenths of a kcal mol(-1) should consider the effects of optimization with the CCSD(T) method.  相似文献   

17.
A full-dimensional ab initio potential energy surface (PES) and dipole moment surface (DMS) are reported for the water dimer, (H2O)2. The CCSD(T)-PES is a very precise fit to 19,805 ab initio energies obtained with the coupled-cluster (CCSD(T)) method, using an aug-cc-pVTZ basis. The standard counterpoise correction was applied to approximately eliminate basis set superposition errors. The fit is based on an approach that incorporates the permutational symmetry of identical atoms [Huang, X.; Braams, B.; Bowman, J. M. J. Chem.Phys. 2005, 122, 044308]. The DMS is a fit to the dipole moment obtained with M?ller-Plesset (MP2) theory, using an aug-cc-pVTZ basis. The PES has an RMS fitting error of 31 cm(-1) for energies below 20,000 cm(-1), relative to the global minimum. This surface can describe various internal floppy motions, including various monomer inversions, and isomerization pathways. Ten characteristic stationary points have been located on the surface, four of which are transition structures and the rest are higher order saddle points. Their geometrical and vibrational properties are presented and compared with available previous theoretical work. The CCSD(T)-PES and MP2-DMS dissociate correctly (and symmetrically) to two H2O monomers, with D(e) = 1665.7 cm(-1) (19.93 kJ/mol). Accurate quantum calculations of the zero-point energy of the dimer (using diffusion Monte Carlo) and the monomers (using a vibrational configuration interaction approach) are reported, and these together with D(e) give a value of D0 of 1042 cm(-1) (12.44 kJ/mol). A best estimated value is 1130 cm(-1) (13.5 kJ/mol).  相似文献   

18.
The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein-protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson-Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos-c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos-c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.  相似文献   

19.
Free energy calculations may provide vital information for studying various chemical and biological processes. Quantum mechanical methods are required to accurately describe interaction energies, but their computations are often too demanding for conformational sampling. As a remedy, level correction schemes that allow calculating high level free energies based on conformations from lower level simulations have been developed. Here, we present a variation of a Monte Carlo (MC) resampling approach in relation to the weighted histogram analysis method (WHAM). We show that our scheme can generate free energy surfaces that can practically converge to the exact one with sufficient sampling, and that it treats cases with insufficient sampling in a more stable manner than the conventional WHAM-based level correction scheme. It can also provide a guide for checking the uncertainty of the level-corrected surface and a well-defined criterion for deciding the extent of smoothing on the free energy surface for its visual improvement. We demonstrate these aspects by obtaining the free energy maps associated with the alanine dipeptide and proton transfer network of the KillerRed protein in explicit water, and exemplify that the MC resampled WHAM scheme can be a practical tool for producing free energy surfaces of realistic systems.  相似文献   

20.
A detailed study of the interaction energies and interaction-induced electric dipole properties in model linear hydrogen cyanide complexes (HCN) m (m?=?2?C4) is carried out within the finite field HF SCF, MP2, CCSD and CCSD(T) approximations using the recently developed LPol-n (n?=?ds, fs, dl, fl) basis sets. The importance of high-order correlation effects and the basis set superposition error is evaluated. To correct for the latter is crucial for obtaining accurate interaction energy values, but the error can safely be neglected in the estimation of induced electric properties when the LPol-n (n?=?ds, fs, dl, fl) basis sets are used. Correlation effects are important in the evaluation of both the interaction energies and the induced electric properties of the systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号