首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Lipase immobilization offers unique advantages in terms of better process control, enhanced stability, predictable decay rates and improved economics. This work evaluated the immobilization of a highly active Yarrowia lipolytica lipase (YLL) by physical adsorption and covalent attachment. The enzyme was adsorbed on octyl–agarose and octadecyl–sepabeads supports by hydrophobic adsorption at low ionic strength and on MANAE–agarose support by ionic adsorption. CNBr–agarose was used as support for the covalent attachment immobilization. Immobilization yields of 71, 90 and 97% were obtained when Y. lipolytica lipase was immobilized into octyl–agarose, octadecyl–sepabeads and MANAE–agarose, respectively. However, the activity retention was lower (34% for octyl–agarose, 50% for octadecyl–sepabeads and 61% for MANAE–agarose), indicating that the immobilized lipase lost activity during immobilization procedures. Furthermore, immobilization by covalent attachment led to complete enzyme inactivation. Thermal deactivation was studied at a temperature range from 25 to 45°C and pH varying from 5.0 to 9.0 and revealed that the hydrophobic adsorption on octadecyl–sepabeads produced an appreciable stabilization of the biocatalyst. The octadecyl–sepabeads biocatalyst was almost tenfold more stable than free lipase, and its thermal deactivation profile was also modified. On the other hand, the Y. lipolytica lipase immobilized on octyl–agarose and MANAE–agarose supports presented low stability, even less than the free enzyme.  相似文献   

2.
The immobilization of horseradish peroxidase (HRP) on composite membrane has been investigated. This membrane was prepared by coating nonwoven polyester fabric with chitosan glutamate in the presence of glutraldehyde as a crosslinking agent. The physico-chemical properties of soluble and immobilized HRP were evaluated. The soluble HRP lost 90% of its activity after 4 weeks of storage at 4°C, whereas the immobilized enzyme retained 85% of its original activity at the same time. A reusability study of immobilized HRP showed that the enzyme retained 54% of its activity after 10 cycles of reuse. Soluble and immobilized HRP showed the same pH optima at pH 5.5. The immobilized enzyme had significant stability at different pH values, where it had maximum stability at pH 3.0 and 6.0. The kinetic properties indicated that the immobilized enzyme had more affinity toward substrates than soluble enzyme. The soluble and immobilized enzymes had temperature optima at 30 and 40°C and were stable up to 40 and 50°C, respectively. The stability of HRP against metal ion inactivation was improved after immobilization. Immobilized HRP exhibited high resistance to proteolysis by trypsin. The immobilized HRP was more resistant to inactivation induced by urea, Triton X-100, and organic solvents compared to its soluble counterpart. The immobilized HRP showed very high yield of immobilization and markedly high stabilization against several forms of denaturants that offer potential for several applications.  相似文献   

3.
Lipase from Rhizomucor miehei (RML) was immobilized onto chitosan support in the presence of some surfactants added at low levels using two different strategies. In the first approach, the enzyme was immobilized in the presence of surfactants on chitosan supports previously functionalized with glutaraldehyde. In the second one, after prior enzyme adsorption on chitosan beads in the presence of surfactants, the complex chitosan beads-enzyme was then cross-linked with glutaraldehyde. The effects of surfactant concentrations on the activities of free and immobilized RML were evaluated. Hexadecyltrimethylammonium bromide (CTAB) promoted an inhibition of enzyme activity while the nonionic surfactant Triton X-100 caused a slight increase in the catalytic activity of the free enzyme and the derivatives produced in both methods of immobilization. The best derivatives were achieved when the lipase was firstly adsorbed on chitosan beads at 4 °C for 1 h, 220 rpm followed by cross-link the complex chitosan beads-enzyme with glutaraldehyde 0.6% v.v?1 at pH 7. The derivatives obtained under these conditions showed high catalytic activity and excellent thermal stability at 60° and 37 °C. The best derivative was also evaluated in the synthesis of two flavor esters namely methyl and ethyl butyrate. At non-optimized conditions, the maximum conversion yield for methyl butyrate was 89%, and for ethyl butyrate, the esterification yield was 92%. The results for both esterifications were similar to those obtained when the commercial enzyme Lipozyme® and free enzyme were used in the same reaction conditions and higher than the one achieved in the absence of the selected surfactant.  相似文献   

4.
Triton X-100-substituted Sepharose 4B (Sepharose-TX) was used for adsorptive immobilization of intestinal brush border membrane using lactose-phlorizin hydrolase as a representative membrane enzyme. Limited heating of membrane preparations was found to enhance binding. This enhancement is concluded to be owing to a greater availability of the hydrophobic sites, as also confirmed by the 1-anilino-8-naphthalene sulfonate fluorescence studies, for interaction with Triton X-100 moieties on the support. The immobilized preparations obtained by this procedure were found useful in hydrolysis of lactose, involving lactose-phlorizin hydrolase, in continuous operations. It is suggested that the approach may be of general utility for immobilization of biologic membranes by interaction of their extramembrane structures using supports with appropriate hydrophobic groups.  相似文献   

5.
A method was proposed to release and separate L-asparaginase (EC 3.5.1.1) from Escherichia coli ATCC 11303 cells with aqueous two-phase micellar systems. The systems were composed of K2HPO4 and Triton X-100. The method combines enzyme release with enzyme purification. The influence of Triton X-100 concentration, K2HPO4 concentration, and pH on the release and partition of L-asparaginase was investigated. Experimental results showed that E. coli cells treated with 9.4% (w/v) K2HPO4 and 15% (w/v) Triton X-100 at 25 degrees C for 15-20 h released nearly 80% of the enzyme. Most of the released enzyme was partitioned to the bottom phase (phosphate-rich phase). The effects of Triton X-100 concentration, K2HPO4 concentration, and pH on cloud point were also studied. Electron micrography indicated that the chemical treatment altered the inner structure of E. coli cells significantly.  相似文献   

6.
脂肪酶的固定化及其在有机酶促反应中稳定性研究   总被引:12,自引:3,他引:12  
辛嘉英  李树本 《分子催化》1999,13(2):103-108
利用吸附法,将圆柱状假丝酵母脂肪酶固定于4种疏水性不同的载体上,固定化酶的活性及稳定性随载休疏水性的增大而增大。用YGW-C6H5作为载体,在有机溶剂-水双液相体系中催化萘普生甲酯的不对称水解,反应120h转化率为24.72%,产品的对映体过量值为94.82%。  相似文献   

7.
Wang H  Xu G  Dong S 《The Analyst》2001,126(7):1095-1099
The electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(II) [Ru(bpy)3(2+)] immobilized in poly(p-styrenesulfonate) (PSS)-silica-Triton X-100 composite films was investigated. The cooperative action of PSS, sol-gel and Triton X-100 attached Ru(bpy)3(2+) to the electrode strongly, and the presence of Triton X-100 prevented drying fractures of the sol-gel films during gelation and even on repeated wet-dry cycles. The modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and NADH in a flow injection analysis (FIA) system with a newly designed flow cell. The detection scheme exhibited good stability, short response time and high sensitivity. Detection limits were 0.1, 0.1 and 0.5 micromol L(-1) for oxalate. TPA and NADH, respectively, and the linear concentration range extended from 0.001 to 1 mmol L(-1) for the three analytes. Applications of the flow cell in ECL and electrochemical detection, as well as the immobilization of reagents based on the cooperative action, are suggested.  相似文献   

8.
A wide range of immobilization procedures have been shown to stabilize the functions of photosynthetic materials. The purpose of this work was to determine if the above procedures can be applied to submembrane fractions. Triton X-100-derived photosystem II submembrane fractions isolated from spinach were immobilized in a glutaraldehyde cross-linked albumin matrix. The optimal conditions were obtained in presence of 1 mM NaCl and 5 mM MgCl2. The treated membranes were less affected by long-term storage at 4°C, high pH and temperature, and strong light exposure. The results are discussed in terms of a diffusion barrier resulting from the immobilization matrix.  相似文献   

9.
The use of very high substrate concentrations favors the kinetically controlled synthesis of cephalexin with penicillin acylase (PA) not only by Michaelian considerations, but also because water activity is depressed, so reducing the rates of the competing reactions of product and acyl donor hydrolysis. Commercial PGA-450, glyoxyl agarose immobilized (PAIGA) and carrier-free cross-linked enzyme aggregates of penicillin acylase (PACLEA) were tested in aqueous media at concentrations close to the solubility of nucleophile and at previously determined enzyme to nucleophile and acid donor to nucleophile ratios. The best temperature and pH were determined for each biocatalyst based on an objective function considering conversion yield, productivity, and enzyme stability as evaluation parameters. Stability was higher with PAIGA and specific productivity higher with PACLEA, but best results based on such objective function were obtained with PGA-450. Yields were stoichiometric and productivities higher than those previously reported in organic medium, which implies significant savings in terms of costs and environmental protection. At the optimum conditions for the selected biocatalyst, operational stability was determined in sequential batch reactor operation. The experimental information gathered is being used for a technical and economic evaluation of an industrial process for enzymatic production of cephalexin in aqueous medium.  相似文献   

10.
Aspartate aminotransferase (AspAT, EC 2.6.1.1) was bound on CNBr-activated Sepharose and the effects of immobilization on the maximum velocity, biologically active pyridoxal-5'-phosphate (PLP), and transaminationable active centers were studied. By comparing these parameters of soluble and immobilized enzyme the factors decreasing the observed reaction rate upon immobilization were evaluated. Ninety percent of the soluble protein in the coupling mixture was bound to the support. The amount of enzyme-bound PLP of immobilized preparation was 83% of that of the soluble one. The coupling recovery of specific activity was 46%, which was 10%-units lower than that of the transaminationable active centers. This difference depends on the fact that a part of the active centers of immobilized enzyme had lower catalytic rate, due to the enzyme-matrix interactions or internal mass transfer limitations, than the others. The immobilized catalytically active AspAT had 80% of the turnover efficiency of the soluble enzyme. The affinity of the enzyme to its substrates did not significantly change upon immobilization, neither did the pH profile.  相似文献   

11.
Immobilized lipase (triacylglycerol ester hydrolase, EC 3.1.1.3) fromCandida rugosa has been immobilized on commercially available microporous polypropylene and used for the batch hydrolysis of different animal fats. The effect of the reaction products at concentrations similar to those obtained at 90% hydrolysis, both on soluble and immobilized lipase, was studied. Glycerol showed low inhibitory effect but oleic acid caused 50% inhibition. A mixture of free fatty acids present in the complete hydrolysis of beef tallow inhibited lipase activity more than 70%. The stability of the enzyme (both soluble and immobilized) was highest in the presence of 20% isooctane. The apparent Michaelis constant for each substrate for the soluble enzyme did not change on immobilization.  相似文献   

12.
β-D-galactosidase (EC 3.2.1.23) from Kluyveromyces marxianus YW-1, an isolate from whey, has been studied in terms of cell disruption to liberate the useful enzyme. The enzyme produced in a bioreactor on a wheat bran medium has been successfully immobilized with a view to developing a commercially usable technology for lactose hydrolysis in the food industry. Three chemical and three physical methods of cell disruption were tested and a method of grinding with river sand was found to give highest enzyme activity (720 U). The enzyme was covalently immobilized on gelatin. Immobilized enzyme had optimum pH and temperature of 7.0 and 40 °C, respectively and was found to give 49% hydrolysis of lactose in milk after 4 h of incubation. The immobilized enzyme was used for eight hydrolysis batches without appreciable loss in activity. The retention of high catalytic activity compared with the losses experienced with several previously reported immobilized versions of the enzyme is significant. The method of immobilization is simple, effective, and can be used for the immobilization of other enzymes.  相似文献   

13.
A non-haemolytic phospholipase C (EC 3.1.4.3) was purified from the culture medium of Achromobacter xylosoxidans with a 5% yield and a purification factor of 330. A combination of ultrafiltration, acetone precipitation and two subsequent affinity chromatographic steps was used. The affinity chromatography is a new application of 2-(4-aminophenylsulphonyl)ethyl-cellulose, a sorbent that has previously been used for the purification of phospholipase C from Bacillus cereus. The purified enzyme gave four distinct bands on polyacrylamide gel electrophoresis, and each band was catalytically active. Under our experimental conditions, the phospholipids examined were hydrolysed in the following order: phosphatidylcholine, phosphatidylethanolamine, sphingomyelin. Neither the synthetic substrate p-nitrophenylphosphorylcholine nor phosphatidylinositol was hydrolysed under different experimental conditions. For maximal hydrolytic activity toward phosphatidylcholine, the enzyme required Triton X-100 and Ca2+ ions. EDTA was inhibitory, but the enzyme activity was almost completely restored by Zn2+. The molecular mass of the phospholipase C, estimated by gel permeation, was 34,000 daltons.  相似文献   

14.
The objective of this work was to select an efficient methodology for preparing active samples of Candida rugosa lipase immobilized in wood cellulignin, to be applied in hydrolysis and ester reactions. For this purpose, lipase was immobilized in the matrix by physical adsorption (pure cellulignin) and covalent binding (activated cellulignin with glutaraldeyde or carbonyldiimidazole [CDI]) in the presence or absence of polyethylene glycol (PEG) (Molecular mass of 1500 Daltons) as stabilizing agent. The activating agent and the presence of PEG-1500 in the immobilization procedure showed a strong influence on enzyme retention in the support. The values for enzyme retention ranged from 20 to 68%, and the highest yield was obtained when the enzyme was immobilized in cellulignin activated with CDI in the presence of PEG-1500. This immobilized derivative presented high hydrolytic (193.27 μM/[mg·min]) and synthetic (522.92 μM/[g·min]) activities when compared with those obtained by other techniques. The superiority of this immobilized system was confirmed by additional analyses, such as infrared spectroscopy and elemental analysis, which demonstrated an appropriate enzyme fixation and the highest level of protein incorporation in the support. Further information on the immobilized derivative was obtained by assessing the recycle potential in both aqueous and nonaqueous media.  相似文献   

15.
Xylanases have important applications in industry. Immobilization and stabilization of enzymes may allow their reuse in many cycles of the reaction, decreasing the process costs. This work proposes the use of a rational approach to obtain immobilized commercial xylanase biocatalysts with optimized features. Xylanase NS50014 from Novozymes was characterized and immobilized on glyoxyl-agarose, agarose-glutaraldehyde, and agarose-amino-epoxy support and on differently activated chitosan supports: glutaraldehyde-chitosan, glyoxyl-chitosan, and epoxy-chitosan. Two different chitosan matrices were tested. The best chitosan derivative was epoxy-chitosan-xylanase, which presented 100% of immobilization yield and 64% of recovered activity. No significant increase on the thermal stability was observed for all the chitosan-enzyme derivatives. Immobilization on glyoxyl-agarose showed low yield immobilization and stabilization degrees of the obtained derivative. The low concentration of lysine groups in the enzyme molecule could explain these poor results. The protein was then chemically modified with ethylenediamine and immobilized on glyoxyl-agarose. The new enzyme derivatives were 40-fold more stable than the soluble, aminated, and dialyzed enzyme (70 °C, pH 7), with 100% of immobilization yield. Therefore, the increase of the number of amine groups in the enzyme surface was confirmed to be a good strategy to improve the properties of immobilized xylanase.  相似文献   

16.
Ethanol production from Jerusalem artichoke was studied using inulinase and Z.mobilis by simultaneous saccharification and fermentation (SSF) process. The SSF process showed higher ethanol yield and productivity than the acid or enzymatic prehydrolyzed two-step process. The optimum temperature and inulinase concentration for SSF were 35°C and 0.25% (v/w, 4.4 units/g of sugar), respectively. In order to operate the SSF process in a continuous mode, inulinase and Z.mobilis cells were coimmobilized in alginate beads, using chitin as a matrix for enzyme immobilization. The maximum ethanol productivity of the continuous SSF process was 55.1 g/L/h, with 55% conversion yield. At the conversion yield of 90%, the productivity was 32.7 g/L/h. The continuous SSF system could be operated stably over 2 wk with an ethanol concentration of 48.6 g/L (95% of theoretical yield).  相似文献   

17.
S1 nuclease fromAspergillus oryzae (EC 3.1.30.1) was coupled to gelatin-alginate composite matrix using the residual free aldehyde groups on the surface of glutaraldehyde crosslinked matrix. The immobilized enzyme retained approximately 10% activity of the soluble enzyme. When partially purified enzyme was bound to the matrix, the immobilized preparation did not show any detectable enzyme activity. However, the activity could be restored when the coupling was carried out in the presence of a coprotein or substrate. The optimum pH of the immobilized S1 nuclease shifted to 3.8 from 4.3 for the soluble enzyme. Also, optimum temperature increased to 65°C after immobilization. Bound S1 nuclease showed increased pH and temperature stabilities. Immobilization brought about a twofold decrease in the Michaelis-Menton constant (K m).  相似文献   

18.
Thermal reduction has been applied to the preparation of copper nanoparticles (Cu-NPs) using three kinds of nonionic surfactants (Triton X-100, Tween-80, and dodecylamine). The Cu-NPs were formed by decomposition of copper(II) oxalate in presence of triphenylphosphine. The effect of the surfactants on the formation of the Cu-NPs was studied via X-ray diffraction, scanning electron microscopy, energy dispersive analysis of X-rays, transmission electron microscopy, thermogravimetric differential thermal analyses, and Fourier transform infra-red spectroscopy. It is shown that the Cu-NPs have an fcc crystal structure. Depending on the surfactant used, Cu-NPs with diameters between 8 and 20 nm can be prepared. The smallest Cu-NPs (8 nm) were formed in the presence of micelles of dodecylamine (yield 49%), while the largest particles (20 nm) were obtained with Triton X-100 (yield 99%). The use of Triton X-100 results in the highest yield and most uniform Cu-NPs.  相似文献   

19.
In this study, the immobilized lipase was prepared by fabric membrane adsorption in fermentation broth. The lipase immobilization method in fermentation broth was optimized on broth activity units and pH adjustments. The viscose fermentation broth can be used with a certain percentage of dilution based on the original broth activity units. The fermentation broth can be processed directly without pH adjustment. In addition, the oleic acid ethyl ester production in solvent-free system catalyzed by the immobilized lipase was optimized. The molar ratio of ethanol to oil acid, the enzyme amount, the molecular amount, and the temperature were 1:1, 12% (w/w), 9% (w/w)(based the total amount of reaction mixture), and 30 °C, respectively. Finally, the optimal condition afforded at least 19 reuse numbers with esterification rate above 80% under stepwise addition of ethanol. Due to simple lipase immobilization preparation, acceptable esterification result during long-time batch reactions and lower cost; the whole process was suitable for industrial ethyl oleate production.  相似文献   

20.
In this study, immobilization conditions and bioethanol production characteristics of immobilized Saccharomyces bayanus were investigated into sodium alginate-graft-poly(N-vinyl-2-pyrrolidone; NaAlg-g-PVP) matrix. The matrix that crosslinked with calcium clorid was used for immobilization of S. bayanus. Bioethanol productivity of the NaAlg-g-PVP matrix was found to increase from 4.21 to 4.84?gL?1?h?1 when compared with the convential sodium alginate matrix. The production of bioethanol was affected by initial glucose concentration and percentage of immobilized cell beads in fermentation medium. Bioethanol productivity was increased from 3.62 to 4.84?gL?1?h?1 while the glucose concentration increasing from 50 to 100?gL?1. Due to the increase in percentage from 10 to 20?% of immobilized cell beads in the fermentation medium, bioethanol productivity was increased from 4.84 to 8.68?gL?1?h?1. The cell immobilized NaAlg-g-PVP beads were protected 92?% of initial activity after six repeated fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号