首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以PdBr2为起始原料,分别选择二叔丁基苯基膦((t-Bu)2PPh)、二叔丁基-(4-二甲基氨基苯基)膦(Amphos)、4,5-双二苯基膦-9,9-二甲基氧杂蒽(Xantphos)为有机膦配体,通过溶剂的配位加成和有机膦的配位取代,合成出3种溴化钯配合物,以寻找性能更佳的偶联催化剂.借助元素分析仪、核磁共振仪及单晶...  相似文献   

2.
通过由Fe3(CO)12、RSH和Et3N所形成的[(μ-CO)(μ-RS)Fe2(CO)6]Et3NH于室温下分别与对或间苯二甲酰氯的原位反应,首次合成6个结构新颖的苯二甲酰基桥联铁硫配合物[(μ-RS)·Fe2(CO)6]2(μ-p-OCC6H4CO-p-μ)(R=Et,n-Bu,t-Bu)以及[(μ-RS)Fe2(CO)6]2(μ-m-OCC6H4CO-m-μ)(R=n-Pr,n-Bu,t-Bu).经元素分析、IR光谱及1HNMR表征了它们的结构,并讨论了产物的生成过程.此外,还提出了合成对苯二甲酰氯的一种新方法.  相似文献   

3.
The reaction of the dimer complex [{Ru(CO)3Cl2}2] with the ligands 4,6-dichloroquinoline-5,8-dione and 6-methoxybenzo[g]quinoline-5,10-dione in ethanol solution led to the neutral mononuclear complexes of general formula [Ru(CO)2Cl22-quinolinedione-N,O)]. The complexes were characterized by elemental analysis, IR and RMN spectroscopy, and the molecular structure of [Ru(CO)2Cl2(6-methoxybenzo[g]quinoline-5,10-dione)] was determined by single-crystal X-ray diffraction. The redox chemistry of ligands and complexes was investigated by cyclic voltammetry, and their potential antitumor activity was also evaluated.  相似文献   

4.
Cationic rhodium and iridium complexes of the type [M(COD)(PPh3)2]PF6 (M = Rh, 1a; Ir, 1b) are efficient precatalysts for the hydroformylation of 1-hexene to its corresponding aldehydes (heptanal and 2-methylhexanal), under mild pressures (2–5 bar) and temperatures (60 °C for Rh and 100 °C for Ir) in toluene solution; the linear to branched ratio (l/b) of the aldehydes in the hydroformylation reaction varies slightly (between 3.0 and 3.7 for Rh and close to 2 for Ir). Kinetic and mechanistic studies have been carried out using these cationic complexes as catalyst precursors. For both complexes, the reaction proceeds according to the rate law ri = K1K2K3k4[M][olef][H2][CO]/([CO]2 + K1[H2][CO] + K1K2K3[olef][H2]). Both complexes react rapidly with CO to produce the corresponding tricarbonyl species [M(CO)3(PPh3)2]PF6, M = Rh, 2a; Ir, 2b, and with syn-gas to yield [MH2(CO)2(PPh3)2]PF6, M = Rh, 3a; Ir, 3b, which originate by CO dissociation the species [MH2(CO)(PPh3)2]PF6 entering the corresponding catalytic cycle. All the experimental data are consistent with a general mechanism in which the transfer of the hydride to a coordinated olefin promoted by an entering CO molecule is the rate-determining step of the catalytic cycle.  相似文献   

5.
Treatment of ruthenium complexes [CpRu(AN)3][PF6] (1a) (AN=acetonitrile) with iron complexes CpFe(CO)2X (2a–2c) (X=Cl, Br, I) and CpFe(CO)L′X (6a–6g) (L′=PMe3, PMe2Ph, PMePh2, PPh3, P(OPh)3; X=Cl, Br, I) in refluxing CH2Cl2 for 3 h results in a triple ligand transfer reaction from iron to ruthenium to give stable ruthenium complexes CpRu(CO)2X (3a–3c) (X=Cl, Br, I) and CpRu(CO)L′X (7a–7g) (L′=PMe3, PMe2Ph, PMePh2, PPh3, P(OPh)3; X=Br, I), respectively. Similar reaction of [CpRu(L)(AN)2][PF6] (1b: L=CO, 1c: P(OMe)3) causes double ligand transfer to yield complexes 3a–3c and 7a–7h. Halide on iron, CO on iron or ruthenium, and two acetonitrile ligands on ruthenium are essential for the present ligand transfer reaction. The dinuclear ruthenium complex 11a [CpRu(CO)(μ-I)]2 was isolated from the reaction of 1a with 6a at 0°C. Complex 11a slowly decomposes in CH2Cl2 at room temperature to give 3a, and transforms into 7a by the reaction with PMe3.  相似文献   

6.
The reaction of K[H6ReL2] with [RuHCl(CO)(PPh3)3−x {P(OPri}3)x](L2 = (PMePh2)2, dppe, (AsPh3)2, or (PPh3)2; x = 0, 1 or 2) leads to [L2(CO)HRe(μ-H)3RuH(PPh3)2−y{P(OPri)3}y] (x = 0 or 1, Y = 0; X = 2, Y = 1(L2 = PPh3)) in a first step. Under the reaction conditions most of these complexes react rapidly with the liberated phosphine giving [L2(CO)Re(μ-H)3Ru(PPh3)3−y- {P(OPri)3}y] (L2 = (PMePh2)2 or dppe, Y = 0; L2 = (PPh3)2, Y = 1) as the only iso complexes. The structure of [(PMePh2)2(CO)Re(μ-H)3Ru(PPh3)3] has been establishedby X-ray structure analysis. The complex [(PPh3)2(CO)Re(μ-H)3Ru(PPh3)2(P(OPri)3)] reacts with molecular hydrogen under pressure to generate [L2(CO)HRe(μ-H)3RuH(PPh3)(P(OPri)3) as the sole product.  相似文献   

7.
The equilibrium constants of the reaction of cis, trans-[Ru(CO)2(PMe3)2(CH3)I] (Mc) with carbon monoxide to give cis, trans[Ru(CO)2(PMe3)2 (COMe)i] (Ac) and trans, trans[Ru(CO)2(PMe3)2(COMe)I] (At) were measured at various temperatures in toluene. The thermodynamic parameters are compared with those obtained for the isoelectronic complexes of iron, and the trend is discussed. The kinetics of the carbonylation reaction of Mc, as well as those of the inverse decarbonylation reaction of At were measured. The kinetics of the carbonylation of the new complex trans, trans-[Ru(CO)2(PMe3)2(CH3)I] (Mt) were also investigated. All the results afford further support to the previously proposed CO insertion mechanism occurring via methyl migration. The comparison of these kinetic results with those of isoelectronic complexes of iron indicates that ruthenium is more reactive than iron, which is reflected by its greater aptitude to act as catalyst in many processes.  相似文献   

8.
A kinetic study of the homogeneous hydroformylation of 1-hexene to the corresponding aldehydes (heptanal and 2-methyl-hexanal) was carried out using a rhodium catalyst formed by addition of 1 equiv. of 1,2-bis(diphenylphosphino)ethane (dppe) to Rh(acac)(CO)2 under mild reaction conditions (80 °C, 1–7 atm H2 and 1–7 atm CO) in toluene; in all cases linear to branched ratios were close to 2. The reaction rate is first-order in dissolved hydrogen concentration at pressures below 3 atm, but independent of this parameter at higher pressures. In both regimes (low and high H2 pressure), the initial rate was first-order with respect to the concentration of Rh and fractional order with respect to 1-hexene concentration. Increasing CO pressure had a positive effect on the rate up to a threshold value above which inhibition of the reaction was observed; the range of positive order on CO concentration is smaller when the total pressure is increased. The kinetic data and related coordination chemistry are consistent with a mechanism involving RhH(CO)(dppe) as the active species initiating the cycle, hydrogenolysis of the acyl intermediate as the rate-determining step of the catalytic cycle at low hydrogen pressure, and migratory insertion of the olefin into the metal-hydride bond as rate limiting at high hydrogen pressure. This catalytic cycle is similar to the one commonly accepted for RhH(CO)(PPh3)3 but different from previous proposals for Rh-diphosphine catalysts.  相似文献   

9.
Six new cluster derivatives [Rh2Co2(CO)6(μ-CO)442-HCCR)] (R=FeCp2 1, CH2OH 2, (CH3O)C10H6CH(CH3)COOCH2CCH 3) and [RhCo3(CO)6(μ-CO)442-HCCR)] (R=FeCp2 4, CH2OH 5, (CH3O)C10H6CH(CH3)COOCH2CCH 6) were obtained by the reactions of [Rh2Co2(CO)12] and [RhCo3(CO)12] with substituted 1-alkyne ligands HCCR [R=FeCp2 7, CH2OH 8, (CH3O)C10H6CH(CH3) COOCH2CCH 9] in n-hexane at room temperature, respectively. Alkynes insert into the Co---Co bond of the tetranuclear clusters to give butterfly clusters. [Rh2Co2(CO)6(μ-CO)442-HCCFeCp2)] (1) was characterized by a single-crystal X-ray diffraction analysis. Reactions of 1, 2 with 7, 8 and ambient pressure of carbon monoxide at 25 °C gave two known cluster complexes [Co2(CO)62, η2-HCCR)] (R=FeCp2 10, CH2OH 11), respectively. All clusters were characterized by element analysis, IR and 1H-NMR spectroscopy.  相似文献   

10.
Complexed diimine in μ-N2H2[Cr(CO)5]2 undergoes a rapid H — D-exchange with deuterium ions, which is inhibited completely by acids; the rate of the H — D exchange is significantly larger for the diimine complex that for the corresponding hydrazine and ammonia complexes, which is explained by the acidic properties of the diimine protons. In the presence of catalytic amounts of strong base N2H2[Cr(CO)5]2 disproportionates fast and irreversibly to N2[Cr(CO)5]2 and N2H4[Cr(CO)5]2; a mechanism is proposed for this reaction. The reactions of the complexed diimine are compared to those of the free diimine; their significance with respect to intermediated steps of the enzymatic N2 fixation is discussed.  相似文献   

11.
Treatment of Mn(CO)5SiTolp2H (2) with an excess of LiAlH4, NaBH4, or NaBH3(CN) in THF at room temperature gave hydrosilane H---SiTolp2H in high yield together with Mn2(CO)10. No reduction of CO ligands was observed. On the other hand, treatment of 2 with an excess of Red-Al (=Na[(CH3OCH2CH2O)2AlH2]) in toluene and subsequent addition of aqueous acidic solution afforded alkylsilanols (CH3)SiTolp2(OH) and (C2H5)SiTolp2(OH). Treatment of the reaction mixture of 2 and Red-Al with LiAlH4 in diethyl ether instead of hydrolysis gave alkylhydrosilanes (CH3)SiTolp2H and (C2H5)SiTolp2H. The methyl and ethyl groups on silicon originate from the CO ligands in 2. These products clearly demonstrate that not only the Si---C coupling, but also C---C coupling occurs efficiently in this reaction.  相似文献   

12.
The methoxycarbonylation of propylene oxide (PO) to methyl β-hydroxybutyrate (MHB) catalyzed by dicobaltoctacarbonyl ([Co2(CO)8]) and 3-hydroxypyridine (3-OH-Py) in methanol system has been studied. The effects of different additives, the molar ratio of 3-OH-Py:Co2(CO)8, temperature, carbon monoxide (CO) pressure, reaction time on the conversion and selectivity have been investigated. The conversion of propylene oxide is 80.4%, and the yield of methyl β-hydroxybutyrate is 74.9% with selectivity 93.2% when the reaction is carried out for 16 h at 80 °C and 6.0 MPa of CO in methanol, with 0.125 mmol of Co2(CO)8, 0.25 mmol of 3-OH-Py. The mechanism of this catalytic reaction has also been proposed.  相似文献   

13.
The reaction of norbornene (NBE) and norbornadiene (NBD) in the presence of seven-coordinate tungsten(II) and molybdenum(II) complexes of the [(CO)4M(μ-Cl)3M(SnCl3)(CO)3] and [MCl(M′Cl3)(CO)3(NCMe)2] (M=W, Mo; M′=Sn, Ge) types leads to ring-opening metathesis polymerization (ROMP) and to the formation of high molecular weight polymers. The geometric structure of these polymers was determined by means of 1H- and 13C-NMR spectroscopy. The monitoring of the reaction between cyclic olefins and the metal complex by means of 1H-NMR spectroscopy allowed us to observe the coordination of NBD to metal atoms in the initiation step of the polymerization process. Compounds of the [MCl(SnCl3)(CO)34-NBD)] type prepared directly from [(CO)4M(μ-Cl)3M(SnCl3)(CO)3] or [MCl(M′Cl3)(CO)3(NCMe)2] (M=W, Mo) in the presence of an excess of NBD initiate the ROMP reaction immediately. The detection of the first-formed products in the reaction between the metal complex and cyclic olefins provides valuable information concerning the nature of the initiating species.  相似文献   

14.
The coordinating properties of the trifluoromethyl elemental compounds Me2PP(CF3)2 and Me2AsP(CF3)2 have been studied by the synthesis and spectroscopic investigations (IR, NMR, MS) of their complexes cis-M(CO)4L2 (A), [(CO)4ML]2 (B) and [(CO)5M]2L (C) (M = Cr, Mo, W). Complexes of type A with L = Me2PP(CF3)2 are obtained in good yield by reaction with M(CO)4NBD (NBD = norbornadiene), whereas with L = Me2AsP(CF3)2 the homobinuclear compounds B are formed. The attempt to prepare the cis-M(CO)4[Me2AsP(CF3)2]2 complexes by treating M(CO)4(Me2AsH)2 with P2(CF3)4 is successful only for M = W. Binuclear compounds of type B or C, in general, can be prepared by stepwise reaction of the ligands with either M(CO)4NBD or M(CO)5THF.  相似文献   

15.
Geometrical isomerization of fac-Mo(CO)3L3 (L = P(OPh)3, P(OMe)3, P(OEt)3) to the mer form and that of cis-Mo(CO)4L2 (L = P(OPh)3, P(OMe)3, PPh2(OMe)) to the trans form were observed in CH2Cl2 at room temperature in the presence of a catalytic amount of Me3SiOSO2CF3 (TMSOTf). Crossover experiments suggest that a ligand dissociation is not involved in the isomerization. A catalytic cycle involving an interaction of the silicon atom in Me3Si+ with one oxygen in P(OR)3 ligands has been proposed. The first isolation and the X-ray structure analysis were attained for mer-Mo(CO)3{P(OPh)3}3 through the TSMOTf-assisted isomerization of fac-Mo(CO)3{P(OPh)3}3.  相似文献   

16.
The biphasic hydroformylation reaction of oct-1-ene, has been investigated by using the water-soluble dinuclear complex [Rh2(μ-StBu)2(CO)2(TPPTS)2] as precursor. Addition of ethanol as a cosolvent dramatically improved the yields but the good regioselectivity in linear aldehyde observed for neat oct-1-ene—water systems (97%) decreased to 83% (for 22% ethanol w/w). It is shown that the dinuclear framework cannot be maintained, that the mononuclear complex [RhH(CO)(TPPTS)3] is formed, and that thiol and significant amounts of [Rh2(μ-StBu)2(CO)4] move into the organic phase. This reaction from the dinuclear species requires the simultaneous presence of water and carbon monoxide. Introduction of the water-soluble thiol HS(CH2)3NMe2 in the bridging positions affords the complex [Rh2(μ-S(CH 2)3NHMe2)2(CO)2(TPPTS)2]Cl2 which can be kept in the aqueous hase but has a low level of catalytic activity.  相似文献   

17.
The Rh(COD) and Ir(COD) homobimetallic complexes of s-indacene-diide, 2,6-dimethyl-s-indacene-diide, as-indacene-diide, and 2,7-dimethyl-as-indacene-diide have been synthesized from the di-lithium salts of the dianions and metal dimers [M(μ-Cl)L2]2 (M = Rh, Ir; L2 = COD, NBD, (ethylene)2, (CO)2 as mixtures of syn and anti isomers. The syn/anti ratio depends on the nature of the ancillary ligands at the metal and on the s or as geometry of the bridging ligand. In the reaction of the 2,7-dimethyl-as-indacene-diide-[M(COD)]2 species with CO, the higher reactivity of the syn isomers has been justified on the basis of a greater instability of the ground state due to steric interactions between the COD groups. Bis-η1 metal-bonded intermediates have been identified in the carbonylation of iridium derivatives; on the other hand, the formation of the bis-η5 mixed complexes syn and anti-{2,7-dimethyl-as-indacene-diide-[Rh(COD)][Rh(CO)2]} and their reactivity strongly support the existence of metal---metal interaction in the rhodium derivatives.  相似文献   

18.
Novel isonitrile derivatives of a diruthenium carbonyl complex, (μ235-guaiazulene)Ru2(CO)5 (2), were synthesized by substitution of a CO ligand by an isonitrile, and were subjected to studies on thermal and photochemical haptotropic interconversion. Treatment of 2 (a 45:55 mixture of two haptotropic isomers, 2-A and 2-B) with RNC at room temperature resulted in coordination of RNC and alternation of the coordination mode of the guaiazulene ligand to form (μ215-guaiazulene)Ru2(CO)5(CNR), 5d–5f, [5d; R=tBu, 5e; 2,4,6-Me3C6H2, or 5f; 2,6-iPr2C6H3] in moderate to good yields. Thermal dissociation of a CO ligand from 5 at 60 °C resulted in quantitative formation of a desirable isonitrile analogue of 2, (μ235-guaiazulene)Ru2(CO)4(CNR), 4d–4f, [4d; R=tBu, 4e; 2,4,6-Me3C6H2, or 4f; 2,6-iPr2C6H3], as a 1:1 mixture of the two haptotropic isomers. A direct synthetic route from 2 to 4d–4f was alternatively discovered; treatment of 2 with one equivalent of RNC at 60 °C gave 4d–4f in moderate yields. All of the new compounds were characterized by spectroscopy, and structures of 5d (R=tBu) and 4d-A (R=tBu) were determined by crystallography. Thermal and photochemical interconversion between the two haptotropic isomers of 4d–4f revealed that the isomer ratios in the thermal equilibrium and in the photostatic state were in the range of 48:52–54:46.  相似文献   

19.
Palladium–copper catalysed cross-coupling reactions of tetracholoroethene with terminal acetylenes RCCH (R=SiMe3, C6H5, C6H4CN-4) in refluxing triethylamine afford the corresponding tetraethynylethenes in 30–60% isolated yields. The reaction of 1,6-bis(trimethylsilyl)-3,4-bis(trimethylsilylethynyl)-hex-3-ene-1,5-diyne with [Co2(CO)6(L2)] [L2=(CO)2 or μ-dppm] affords complexes in which one or two (trans) acetylene moieties are coordinated by a dicobalt fragment.  相似文献   

20.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号