首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical properties and effects in fibrous composite materials are compared. The materials are based on the same matrix (EPON-828 epoxy resin) and differ in the type of fibers: Thornel-300 carbon microfibers, graphite microwhiskers, carbon zigzag nanotubes, and carbon chiral nanotubes. Two material models are considered: a model of elastic medium (macrolevel model) and a model of elastic mixture (micro-nanolevel model). Mechanical constants of 40 materials (4 types + 10 modifications) are calculated and compared. The theoretical ultimate compression strength along the fibers is discussed. The effects accompanying the propagation of longitudinal waves in the fiber direction are investigated.  相似文献   

2.
3.
The strength and deformability of reinforced polymers in tension across the fibers is investigated. It is assumed that the polymer deforms as an ideal elastoplastic body. Relations are obtained for the nature of the deformation of the polymer between the fibers and the strength and deformability of the composite with allowance for the structural distribution of the components. Theoretical stress-strain diagrams are presented for composites with different reinforcement densities and resin elasticities. The theoretical values of the strength and deformation of reinforced polymers with the load applied across the fibers are compared with the results of experiments on model specimens of epoxy-Thiokol polymers.Leningrad Mechanical Institute. Translated from Mekhanika Polimerov, No. 4, pp. 682–687, July–August, 1970.  相似文献   

4.
Molecular mechanics and solid mechanics are linked to establish, a nanoscale analytical continuum theory for determination of stiffness and Young's modulus of carbon nanotubes. A space-frame structure consisted of representative unit cells has been introduced to describe the mechanical response of carbon nanotubes to the applied loading. According to this assumption a novel unit cell, given the name mechanical unit cell here is introduced to construct a graphene sheet or the wall of the carbon nanotubes. Incorporating the Morse potential function with the strain energy of the mechanical unit cells in a carbon nanotube is the key point of this study. The structural model of the carbon nanotube is solved to obtain its Young's modulus by using the principle of minimum total potential energy. It was found that the Young's modulus of the zigzag and armchair single-walled carbon nanotubes are 1.42 and 1.30 TPa, respectively. The results indicate sensitivity of the stiffness and Young's modulus of carbon nanotubes to chirality but show no dependence on its diameter. The presented analytical investigation provides a very simple approach to predict the Young's modulus of carbon nanotubes and the obtained results are in good agreement with the existing experimental and theoretical data.  相似文献   

5.
In this paper, using the continuum approximation together with Lennard–Jones potential, a new semi-analytical expression is given to evaluate the van der Waals interaction between two single-walled carbon nanotubes. Based on this expression, two new formulations are also proposed to model multi-walled carbon nanotubes. In the first one, the interactions between each pair of shells from the inner and outer tubes are summed up over all of the pairs, whereas in the second formulation, a set of correction factors are applied to convert the results of double-walled carbon nanotubes to the correlated multi-walled ones. With respect to the present formulations, extensive studies on the variations of force distributions are performed by varying nanotube geometries so that the important features of the geometrical parameters are explored. Moreover, an acceptance condition for a nanotube at rest which is to be sucked into a semi-infinite nanotube is obtained. The influence of different geometrical parameters on the acceptance condition and suction energy, two main characteristics of nanotube-based systems for applications such as drug delivery and so on, is fully demonstrated. Lastly, an interesting relation for the maximum value of suction energy in terms of geometrical parameters is also extracted in this study.  相似文献   

6.
This work deals with a study of the vibrational properties of functionally graded nanocomposite beams reinforced by randomly oriented straight single-walled carbon nanotubes (SWCNTs) under the actions of moving load. Timoshenko and Euler-Bernoulli beam theories are used to evaluate dynamic characteristics of the beam. The Eshelby-Mori-Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. An embedded carbon nanotube in a polymer matrix and its surrounding inter-phase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The primary contribution of the present work deals with the global elastic properties of nano-structured composite beams. The system of equations of motion is derived by using Hamilton’s principle under the assumptions of the Timoshenko beam theory. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. In order to evaluate time response of the system, Newmark method is also used. Numerical results are presented in both tabular and graphical forms to figure out the effects of various material distributions, carbon nanotube orientations, velocity of the moving load, shear deformation, slenderness ratios and boundary conditions on the dynamic characteristics of the beam. The results show that the above mentioned effects play very important role on the dynamic behavior of the beam and it is believed that new results are presented for dynamics of FG nano-structure beams under moving loads which are of interest to the scientific and engineering community in the area of FGM nano-structures.  相似文献   

7.
Conclusion We conducted a dilatometric study of three types of hybrid unidirectionally reinforced composites (organic-glass-, organic-carbon-, and carbon-glass-fiber plastics), each of which was represented by several batches differing in the relative content of the two types of fibers. The tests were performed on a specially-designed laboratory prototype. It was shown that, for the materials studied, the coefficient of linear expansion can be controlled by means of hybridization — by combining several types of fibers with positive and negative values of the coefficient of linear expansion in one composite. Analytic expressions for the coefficient that were obtained by generalizing a three-phase model of a two-component composite with isotropic fibers to the case of a hybrid composite with anisotropic fibers satisfactorily describe the experimental data.Translated from Mekhanika Kompozitnykh Materialov, No. 2, pp. 229–236, March–April, 1989.  相似文献   

8.
This paper presents the mathematical modeling of the nonlinear vibration behavior of a hybrid laminated plate composed of carbon nanotube reinforced functionally graded (CNTR-FG) layers and conventional fiber reinforced composite (FRC) layers. Three type symmetric distributions of single walled carbon nanotubes (SWCNTs) through the thickness of layers are considered. The cracks are modeled as aligned slit cracks across the ply thickness and transverse to the laminate plane. The distribution of cracks is assumed to be statistically homogeneous corresponding to an average crack density. The obtained partial differential equations are solved by the element-free kp-Ritz method, and the iteration process is dealt with using the linearized updated mode method. Detailed parametric studies are conducted investigate the effects of matrix crack density, CNTs distributions, CNT volume fraction, plate aspect ratio and plate length-to-thickness ratio, boundary conditions and number of layers on the frequency-amplitude responses of hybrid laminated plates containing CNTR-FG layers.  相似文献   

9.
A variant of determining the elastic characteristics of composites containing irregularly oriented shape-anisotropic filler particles of two types (short fibers and thin platelets) is considered. The effective elastic constants of the composites are calculated by using the method of orientational averaging of elastic characteristics of isolated transversely isotropic structural elements reinforced with unidirectionally oriented short fibers or coplanarly arranged thin platelets. The superposition of elastic properties of the irregularly oriented structural elements, with account of their orientational distribution in the composite material, is accepted. The calculation results are compared with experimental data for the effective elastic moduli of polymeric composites reinforced with short glass fibers and of polymeric nanocomposites containing the platelet-type particles of organically modified montmorillonite. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 42, No. 3, pp. 285–300, May–June, 2006.  相似文献   

10.
The thermal conductivity of epoxy composites containing not only the traditional fillers quartz, talc, carbon black, and aerosil, but also the very promising carbon nanomaterials is investigated. Two kinds of carbon nanomaterials — multi-wall (MWNT) and single-wall (SWNT) carbon nanotubes — were considered. The influence of their content (from 0.05 to 3.0 wt.%) on the thermal conductivity of MWNT-epoxy composites was studied. The thermal conductivity of epoxy composites was examined in the temperature range from −150 to 150°C. It was found that the introduction of 0.1–1.0 wt.% MWNT enhanced the thermal conductivity of pure epoxy resin by about 40%. A further increase in content of the nanotubes decreased the thermal conductivity. This can be explained by the worsening of nanotube dispersion at their high concentrations. The maximum growth in the thermal conductivity of the epoxy composites, on the entire range of temperatures considered, was observed at a 0.1 wt.% content of MWNT. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 44, No. 1, pp. 117–126, January–February, 2008.  相似文献   

11.
Experimental results on the mechanical properties under tension and compression of composites based on a phenol-formaldehyde binder reinforced with short glass fibers are reported. Unidirectional structures, in which the reinforcing elements had different orientations with respect to the external load, were studied, as well as chaotically reinforced composites. In addition, the mechanical properties of the polymer matrix and of the reinforcing elements as well as the bond strength between them were also determined. An analysis of the results obtained in the tension experiments is presented, based on a model in which the frictional mechanism of interaction between the polymer matrix and the reinforcing elements is utilized. The quantitative relationships deduced give results agreeing with those obtained experimentally.  相似文献   

12.
Equations of a mathematical model for bodies of revolution made of elastic homogeneous and fiber-reinforced materials and subjected to large deformations are presented. The volume content of reinforcing fibers is assumed low, and their interaction through the matrix is neglected. The axial lines of the fibers can lie both on surfaces of revolution whose symmetry axes coincide with the axis of the body of revolution and along trajectories directed outside the surfaces. The equations are obtained for the macroscopically axisymmetric problem statement where the parameters of macroscopic deformation of the body vary in its meridional planes, but are constant in the circumferential directions orthogonal to them. The equations also describe the torsion of bodies of revolution and their deformation behavior under the action of inertia forces in rotation around the symmetry axis. The results of a numerical investigation into the large deformations of toroidal bodies made of elastic homogeneous and unidirectionally reinforced materials under torsion caused by a relative rotation of their butt-end sections around the symmetry axis are presented.  相似文献   

13.
《Applied Mathematical Modelling》2014,38(11-12):2934-2945
Based on an effective model of multi-walled carbon nanotubes and Donnell-shell theory, an analytical method is presented to study dynamic stability characteristics of multi-walled carbon nanotubes reinforced composites considering the surface effect of carbon nanotubes. From obtained results it is seen that carbon nanotubes composites, under combined static and periodic axial loads, may occur in a parametric resonance, the parametric resonance frequency of dynamic instability regions of CNTs reinforced composites under axially oscillation loading enhances as the stiffness of matrix surrounding CNTs increases, and the surface effective modulus and residue stress of carbon nanotubes make the parametric resonance frequency and the region breadth of dynamic instability of carbon nanotubes reinforced composites increase.  相似文献   

14.
Based on the Hamiltonian for charge carriers in carbon nanotubes with finite lengths, we obtain eigenvalues and eigenfunctions in a neighborhood of the Dirac points (wave functions written analogously to the two-component Dirac wave function are expressed in terms of Hermite polynomials, and the spectrum is equidistant) in the presence of a longitudinal electric field. We express the solution in terms of the Hermite functions in the case of carbon nanotubes with infinite lengths. Based on the obtained wave function for an elongated nanotube, we consider the problem of determining the coefficient of charge carrier transport through the nanotube. The results of finding the transport coefficient can also be applied to other nanoparticles, in particular, to carbon chains and nanotapes. We propose to use the eigenvalues and eigenfunctions of nanotubes with finite lengths to consider the problem of radiation generation in a nonlinear medium based on an array of such noninteracting nanotubes.  相似文献   

15.
建立以横截面为研究对象的多壁碳纳米管能量模型,通过计算碳纳米管中原子之间的势能,分析影响碳纳米管多边形化的因素.本文通过分析与对比双壁和三壁碳纳米管总能量中影响因素的一系列数据,得出其横截面多边形化的影响因素有横截面的半径、管壁的个数以及范德华力等.  相似文献   

16.
The possible reasons for the violation of additivity laws for the density and elastic modulus of polymer nanocomposites (epoxy resin filled with silicon oxide nanoparticles) are considered. The fact that each nanoparticle is surrounded by a distinctive boundary layer is used to describe this phenomenon. The thickness and density of the layer are determined by measuring the density and elastic modulus of a polymer with different volume fractions of filler. A model for determining the strength of an epoxy nanocomposite by using the theory of short fibers is proposed. This model allowed us to describe the nonmonotonic relationship between the ultimate strength of the epoxy nanocomposite and the volume fraction of filler. It is shown that the filling of epoxy resin with silicon oxide nanoparticles beyond 5 vol. % decreases the strength of the composite in comparison with that of pure epoxy resin.  相似文献   

17.
This paper deals with free vibration analysis of functionally graded composite shell structures reinforced by carbon nanotubes. Uniform and three distributions of carbon nanotubes which are graded in the thickness direction of the structure are considered. The effective material properties are determined via a micro-mechanical model using some efficiency parameters. The equations of motion are developed based on a discrete double directors shell finite element formulation which introduces the transverse shear deformations via a higher-order distribution of the displacement field. Comparison studies are carried out for various functionally graded composite shell structures reinforced by carbon nanotubes in order to highlight the applicability and the efficiency of the proposed model in the prediction of the vibrational behavior of such shell structures.  相似文献   

18.
The problem of determining the stress-intensity factors near cracks interacting with fibers is solved for the first time using data from optical-polarization measurements. Simplified models of composites are investigated — plates reinforced with single short fibers with cracks assigned on one of the ends of the fibers and tensioned in the direction of the fibers. The plates (dies) were fabricated from a photosensitive material, and the fibers were modeled by bars of steel, glass, and polymer. The stress-intensity factors were determined from Eq. (5) using data derived from optical-polarization measurements at several points by the nonlinear method of least squares. We investigated the influence exerted by several physical and geometric parameters on the stress-intensity factors. It was established that the stress-intensity factor K1 near the end of a crack interacting with a fiber is higher than the factor K0 1 near a crack of corresponding length in the unreinforced plate. The ratio K1/K0 1 depends on the mechanical properties of the fiber and die materials and the geometric dimensions of the crack and fiber. Despite the fact that these results were obtained using simplified models of composites, they are of interest for evaluation of the failure and serviceability of real composites.Scientific-Research Institute of Mechanics, M. V. Lomonosov Moscow State University, Moscow, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 32, No. 4, pp. 493–501.  相似文献   

19.
A variant of a stepwise analysis of the elastic properties of a carbon-nanotube-reinforced composite with account of the effect of interphase layers between the nanotubes and the polymer matrix is reported. The preliminary calculation of the elastic constants of a structural element incorporating a nanotube and an interphase layer and the subsequent calculation of independent elastic constants of a composite with such transversely isotropic structural elements oriented in one direction are both performed by using the Mori–Tanaka theory of an equivalent medium. The calculations are carried out for a wide range of ratios between the elastic moduli of the interphase layer and matrix. The elastic constants of a composite with randomly oriented nanotubes are obtained by using the method of orientational averaging.  相似文献   

20.
This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 4, pp. 327–338, May–June, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号