首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel copolymer with fluorescence properties in mesoporous silica SBA-15 was prepared via a combination of surface-initiated reversible addition-fragmentation chain transfer(RAFT) polymerization and "click" chemistry.A sufficient amount of peroxide groups were introduced into mesoporous silica SBA-15 channel pores and were further used to initiate the RAFT polymerization of styrene and 4-vinylbenzyl azide,resulting in SBA-15 supported polystyrene-co-poly(4-vinylbenzyl azide) copolymer(PS-co-PVBA/SBA-15) hybrid material.The samples were characterized by Fourier transform infrared spectroscopy(FT-IR),transmission electron microscopy(TEM),thermogravimetry analysis(TGA),N_2 adsorption-desorption isotherms and X-ray diffraction(XRD),respectively.The results show that the styrene and 4-vinylbenzyl azide had copolymerized inside mesoporous silica SBA-15.Subsequently,Npropargyl-carbazole(PC) was connected to PS-co-PVBA/SBA-15 hybrid material via "click" reaction,resulting in PS-co-PVBC/SBA-15 with carbazole side groups hybrid material.The fluorescence spectrum is dominated by a broad band from 350 nm to 400 nm in narrow region and the maximum peak is 362 nm,indicating the characteristic absorption of the carbazole group of PS-co-PVBC/SBA-15 hybrid material.  相似文献   

2.
The synthesis and characterization of Class II–III mixed valence complexes have been an interesting topic due to their special intermediate behaviour between localized and delocalized mixed valence complexes. To investigate the influence of the isocyanidometal bridge on metal-to-metal charge transfer (MMCT) properties, a family of new isocyanidometal-bridged complexes and their one-electron oxidation products cis-[Cp(dppe)Fe−CN−Ru(L)2-NC−Fe(dppe)Cp][PF6]n (n=2, 3) (Cp=1,3-cyclopentadiene, dppe=1,2-bis(diphenylphosphino)ethane, L=2,2’-bipyridine (bpy, 1[PF6]n ), 5,5’-dimethyl-2,2’-bipyridyl (5,5’-dmbpy, 2[PF6]n ) and 4,4’-dimethyl-2,2’-bipyridyl (4,4’-dmbpy, 3[PF6]n )) have been synthesized and fully characterized. The experimental results suggest that all the one-electron oxidation products may belong to Class II–III mixed valence complexes, supported by TDDFT calculations. With the change of the substituents of the bipyridyl ligand on the Ru centre from H, 5,5’-dimethyl to 4,4’-dimethyl, the energy of MMCT for the one-electron oxidation complexes changes in the order: 13+ < 23+ < 33+ , and that for the two-electron oxidation complexes decreases in the order 14+ > 34+ > 24+ . The potential splitting (ΔE1/2(2)) between the two terminal Fe centres for N[PF6]2 are the largest potential splitting for the cyanido-bridged complexes reported so far. This work shows that the smaller potential difference between the bridging and the terminal metal centres would result in the more delocalized mixed valence complex.  相似文献   

3.
A new molecular precursor strategy has been used to prepare a series of single-site catalysts that possess isolated iron centers supported on mesoporous SBA-15 silica. The iron centers were introduced via grafting reactions of the tris(tert-butoxy)siloxy iron(III) complex Fe[OSi(O(t)Bu)(3)](3)(THF) with SBA-15 in dry hexane. This complex reacts cleanly with the hydroxyl groups of SBA-15 to eliminate HOSi(O(t)Bu)(3) (as monitored by (1)H NMR spectroscopy) with formation of isolated surface species of the type identical with SiO-Fe-[OSi(O(t)Bu)(3)](2)(THF). In this way, up to 21% of the hydroxyl sites on SBA-15 were derivatized (0.23 Fe nm(-)(2)), and iron loadings in the range of 0.0-1.90% were achieved. The structure of the surface-bound iron species, as determined by spectroscopic methods (electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), UV-vis, and in situ infrared measurements) and by elemental analyses, contains a pseudotetrahedral iron(III) center. The THF ligand of this surface-bound complex was quantitatively displaced by acetonitrile (by (1)H NMR spectroscopy). Calcination of these materials at 300 degrees C for 2 h under oxygen resulted in removal of all organic matter and site-isolated iron surface species that are stable to condensation to iron oxide clusters. Spectroscopic data (UV-vis and EPR) suggest that the iron centers retain a mononuclear, pseudotetrahedral iron(III) structure after calcination. The calcinated, iron-grafted SBA-15 materials exhibit high selectivities as catalysts for oxidations of alkanes, alkenes, and arenes, with hydrogen peroxide as the oxidant.  相似文献   

4.
Four different silica mesostructures, SBA-15 with mesopore size (8.5 nm), SBA-15 with mesopore size (10.3 nm), mesocellular foam (MCF) with uniform cell size (33.2 nm), and MCF with bimodal mesoporosity, were grafted with aminopropyl groups and used for selective recovery of Mo(VI) from Re(VII)-containing effluent. Adsorption isotherms and mechanism of Mo(VI) adsorption on these materials were studied. The adsorbed complexes of Mo(VI) could be formed by ion exchange process or/and by chelation reaction. This study shows a new approach for fractional recovery and separation of Mo(VI) from Re(VII) by using amino-modified SBA-15-type mesoporous silica.  相似文献   

5.
The semiquinone-catecholate based mixed valence complex, [FeIII(bispicen)(Cl4Cat)(Cl4SQ)] x DMF (1), and catecholate based (H2bispictn)[Mn2III(Cl4Cat)4(DMF)2] (2) (bispicen = N,N'-bis(2-pyridylmethyl)-1,2-ethanediamine, bispictn = N,N'-bis(2-pyridylmethyl)-1,3-propanediamine, Cl4Cat = tetrachlorocatecholate dianion, and Cl4SQ = tetrachlorosemiquinone radical anion) were synthesized directly utilizing a facile route. Both the complexes have been characterized by single crystal X-ray diffraction study. The electronic structures have been elucidated by UV-vis-NIR absorption spectroscopy, cyclic voltammetry, EPR, and magnetic properties. The structural as well as spectroscopic features support the mixed valence tetrachlorosemiquinone-tetrachlorocatecholate charge distribution in 1. The ligand based mixed valence state was further confirmed by the presence of an intervalence charge transfer (IVCT) band in the 1900 nm region both in solution and in the solid. The intramolecular electron transfer, a phenomenon known as valence tautomerism (VT), has been followed by electronic absorption spectroscopy. For 1, the isomeric form [FeIII(bispicen)(Cl4Cat)(Cl4SQ)] is favored at low temperature, while at an elevated temperature, the [FeII(bispicen)(Cl4SQ)2] redox isomer dominates. Infrared as well as UV-vis-NIR spectral characterization for 2 suggest that the MnIII(Cat)2- moiety is admixed with its mixed valence semiquinone-catecholate isomer MnII(SQ)(Cat)-, and the electronic absorption spectrum is dominated by the mixed charged species. The origin of the intervalence charge transfer band in the 1900 nm range is associated with the mixed valence form, MnII(Cl4Cat)(Cl4SQ)-. The observation of VT in complex 1 is the first example where a mixed valence semiquinone-catecholate iron(III) complex undergoes intramolecular electron transfer similar to manganese and cobalt complexes.  相似文献   

6.
Coinage metal nanoparticles with high dispersion can serve as highly efficient heterogeneous catalysts. However, owing to their low melting point, poor thermal stability remains a major obstacle towards their application under reaction conditions. It is a common practice to use porous inorganic templates such as mesoporous silica SBA-15 to disperse Ag nanoparticles (NPs) against aggregation but their stability is far from satisfactory. Here, we show that the catalytic activity for hydrogenation of dimethyl oxalate (DMO) to methyl glycolate (MG) over Ag NPs dispersed on SBA-15 silica can be further promoted by incorporation of alkali metal ions at small loading, which follows the inverse order of their cationic size: Li+ > Na+ > K+ > Rb+. Among these, 5Ag1–Li0.05/SBA-15 can double the MG yield compared to pristine 5Ag/SBA-15 under identical conditions with superior thermal stability. Akin to the effect of an ionic surfactant on stabilization of a micro-emulsion, the cationic charge of an alkali metal ion can maintain dispersion and modulate the surface valence of Ag NPs. Interstitial Li in the octahedral holes of the face center packed Ag lattice is for the first time confirmed by X-ray pair distribution function and electron ptychography. It is believed that this interstitial-stabilization of coinage metal nanoparticles could be broadly applicable to multi-metallic nanomaterials for a broad range of C–O bond activating catalytic reactions of esters.

Coinage metal nanoparticles with high dispersion can serve as highly efficient heterogeneous catalysts.  相似文献   

7.
It is shown that intrinsically stiff chain aggregates of a metallosupramolecular coordination polyelectrolyte (MEPE) can form in the cylindrical nanopores of MCM-41 and SBA-15 silica by self-assembly of its constituents (metal ions and organic ligand). The UV/vis spectra of the resulting MEPE-silica composites exhibit the characteristic metal-to-ligand charge transfer band of the MEPE complex in solution. For the MEPE-silica composite in SBA-15 an iron content of 1.2 wt % was found, corresponding to ca. 10 MEPE chains disposed side by side in the 8 nm wide pores of the SBA-15 matrix. In the case of MCM-41 (pore width < 3 nm), where only one MEPE chain per pore can be accommodated, an iron content of 0.3 wt % was obtained, corresponding to half-filling of the pores. It was also found that MEPE chains spontaneously enter the pores of SBA-15, when a solution of MEPE is exposed to the silica matrix.  相似文献   

8.
Effect of zirconium presence in the silica framework and content and speciation of vanadium surface oxo-complexes on the catalytic behavior of VOx/Zr–SBA-15 catalysts in oxidative dehydrogenation of ethanol was investigated. Experimental results bring evidence of successful incorporation of zirconium into ordered mesoporous silica framework with the preservation of ordered mesoporosity by hydrothermal template base synthesis method. The presence of zirconium in the SBA-15 framework increases reducibility of vanadium species and acidity of the catalysts. It is reflected in higher activity of vanadium species expressed as turn-over frequency (e.g., TOF of 20 h?1 for 5%VOx/Zr–SBA-15 sample in comparison with TOF of 12 h?1 for 5%VOx/SBA-15 sample) and also in significant decrease of selectivity to acetaldehyde (65% in comparison with 90% for mentioned samples) followed by increase in selectivity to ethylene (25% in comparison with 5%). This change in distribution of reaction products is related to stronger acidity character of surface OH groups and inhibition effect of formed water vapours on the oxidative dehydrogenation products (acetaldehyde). Catalytic data also reveal that oligomeric/polymeric tetrahedrally coordinated vanadium species exhibit higher activity in ethanol oxidative dehydrogenation than monomeric complexes. In addition, comparison of the catalytic performance of VOx/Zr–SBA-15 catalysts with VOx/SBA-15 catalysts showed that catalytic properties of VOx/Zr–SBA-15 catalysts can be tuned by incorporation of controlled amount of zirconium into silica framework.  相似文献   

9.
One-dimensional V2O5 nanowires have been synthesized inside the channels of mesoporous silica SBA-15 through chemical approach, which involves aminosilylation of silanol groups on the silica surface, anchoring of isopoly acid, H6V10O28, by neutralization of basic amine groups, and thermal decomposition. The formation and physicochemical properties of the nanowires were monitored and studied by TG-DTA, variable temperature in situ XRD, TEM, N2 sorption measurements and UV-Vis DRS. The results indicate that V2O5 nanowires formed within SBA-15 channels belong to orthorhombic polycrystal domains. The oxygen-to-metal charge transfer band of V2O5 nanowires shows a blue shift in comparison with bulk V2O5, which clearly exhibits the quantum size effect of nanowires.  相似文献   

10.
The photo-induced charge transfer in four series of Prussian blue (PB) analogues was studied from photoacoustic spectra. In cobalticyanides the observed signals were assigned to a metal-to-ligand charge transfer, which appears as a shoulder below 450 nm, and to d-d transitions for Co(II), Ni(II) and Cu(II) complex salts. No evidence of metal-to-metal charge transfer was observed for this series, which is probably due to the high stability of low spin cobalt(III) in the hexacyanide complex. Photoacoustic spectra for ferricyanides are broad bands, which result particularly intense up to 750 nm. Such features were attributed to the overlapping of contributions from metal-to-ligand (<600 nm) and metal-to-metal charge transfer transitions, with probably also a minor contribution from d-d transitions in the outer metal. The spectra for the ferrocyanides series are dominated by the metal-to-ligand charge transfer band below 550 nm, approximately 100 nm above this transition in cobalticyanides. Within the studied solids, the most intense and broad metal-to-metal charge transfer bands were found for a series of low spin Co(III) high spin Co(II) hexacyanoferrates(II,III) and with similar features also for ferric ferrocyanide (Prussian blue), assigned to Fe(II)-->Co(III) and Fe(II)-->Fe(III) photo-induced transition, respectively. The first of these transitions requires of more energetic photons to be observed, its maximum falls at 580 nm while for Prussian blue it is found at 670 nm. Prussian blue analogues are usually obtained as nanometric size particles and many of them have a microporous structure. The role of surface atoms on the observed charge transfer bands in the studied series of compounds is also discussed.  相似文献   

11.
A magnetic nanoparticle conjugated mesoporous nanocatalyst (Fe(3)O(4)@mesoporous SBA-15) with a high surface area has been synthesized by chemical conjugation of magnetite (Fe(3)O(4)) nanoparticles with functionalized mesoporous SBA-15. Functionalized mesoporous SBA-15 containing surface carboxyl and amino groups was synthesized via the thiol-ene click reaction of cysteine hydrochloride and vinyl functionalized SBA-15. The catalytic activity of the robust, safe and magnetically recoverable Fe(3)O(4)@mesoporous SBA-15 nanocatalyst was evaluated in the Biginelli reaction under mild conditions for the synthesis of a diverse range of 3,4-dihydropyrimidin-2(1H)-ones. The separation and reuse of the Fe(3)O(4)@mesoporous SBA-15 nanocatalyst were simple, effective and economical.  相似文献   

12.
The reactions of the half‐sandwich iron(II) complex [FeCl(Cp*)(tmeda)] ( 1 ; Cp*=η5‐C5Me5, TMEDA=N,N,N′,N′‐tetramethylethylenediamine) with potassium naphthalenide or potassium anthracenide gave the diamagnetic complexes [(Cp*)Fe(μ‐polyarene)Fe(Cp*)] (polyarene=naphthalene ( 2 ), anthracene ( 3a )), which have two {(Cp*)Fe} units bound to opposite faces of the polyarene. One of two {(Cp*)Fe} units in 3a is located over the central ring of anthracene while the other is positioned over an outer ring. The {(Cp*)Fe} unit bound to the central ring of 3a migrates to the outer ring upon heating in the solid state to give the isomer 3b . The electrochemical potential separations between successive one‐electron redox events for complexes 2 and 3b are large. The mixed valence complexes [ [2]+ ]+ and [ [3b]+ ]+ were synthesized by chemical oxidation. The mixed‐valence complex [ [3b]+ ]+ is charge delocalized on the Mössbauer timescale at 78 K, and its absorption spectrum shows an intervalence charge‐transfer band. Complex [ [2]+ ]+ exhibits two absorption bands in the near‐IR region and a slightly broadened doublet in the Mössbauer spectrum. DFT calculations were carried out to examine the electronic structures of these dinuclear iron(I) complexes to elucidate the factors responsible for their diamagnetism and to determine the degree of charge delocalization in the mixed‐valence complexes.  相似文献   

13.
The heterotrinuclear complexes trans- and cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) are unprecedented examples of mixed valence complexes based on ferrocyanide bearing three different metal centers. These complexes have been assembled in a stepwise manner from their {trans-III-L(14S)Co(III)}, {cis-VI-L(15)Rh(III)}, and {Fe(II)(CN)(6)} building blocks. The preparative procedure follows that found for other known discrete assemblies of mixed valence dinuclear Cr(III)/Fe(II) and polynuclear Co(III)/Fe(II) complexes of the same family. A simple slow substitution process of [Fe(II)(CN)(6)](4-) on inert cis-VI-[Rh(III)L(15)(OH)](2+) leads to the preparation of the new dinuclear mixed valence complex [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) with a redox reactivity that parallels that found for dinuclear complexes from the same family. The combination of this dinuclear precursor with mononuclear trans-III-[Co(III)L(14S)Cl](2+) enables a redox-assisted substitution on the transient {L(14S)Co(II)} unit to form [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+). The structure of the final cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) complex has been established via X-ray diffraction and fully agrees with its solution spectroscopy and electrochemistry data. The new species [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) and [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) show the expected electronic spectra and electrochemical features typical of Class II mixed valence complexes. Interestingly, in the trinuclear complex, these features appear to be a simple addition of those for the Rh(III)/Fe(II) and Co(III)/Fe(II) moieties, despite the vast differences existent in the electronic spectra and electrochemical properties of the two isolated units.  相似文献   

14.
An iron Schiff base complex was encapsulated in SBA-15 mesoporous silica to afford a Fe(III)-Schiff base/SBA-15 heterogeneous nanocatalyst for the synthesis of pyridopyrazine and quinoxaline heterocycles. These reactions proceeded in water with excellent yields. The catalyst was characterized by physico-chemical and spectroscopic methods and found to retain the characteristic channel structures of the SBA-15, allowing good accessibility of the encapsulated metal complex.  相似文献   

15.
高温下自生压力原位碳化制取介孔碳   总被引:1,自引:1,他引:0  
以不同配比表面活性剂为软模板合成as-SBA-15, 将其在特制高压釜内, 通过高温自生压力反应(RAPET)使表面活性剂软模板在SBA-15的孔道内原位碳化, 得到碳/介孔二氧化硅复合物, 表面活性剂同时作为模板剂和碳源. 用氢氧化钠溶液腐蚀二氧化硅后得到多孔碳. 氮气吸附脱附测试结果表明, 所得到的碳材料具有较高的比表面积和较窄的孔径分布. 在氮气氛围下煅烧as-SBA-15可使表面活性剂模板挥发.  相似文献   

16.
Pt nanoparticles (NPs) have been successfully encapsulated in SBA-15 mesoporous silica support. The silica was firstly functionalized by polyaminoamine (PAMAM) dendrimers with various generations and provided different nanometer space for Pt NPs. The growth of Pt NPs is restricted by the double confinement effect of PAMAM dendrimers and SBA-15 mesopores. The Pt NPs can be precisely controlled to localize inter- or intradendrimeric within SBA-15 tunnels. The different pore structures of Gn-PAMAM-SBA-15 (Gn-PS15) support have great influence on the catalytic performance of the encapsulated Pt NPs. The blocking structure of higher generation Gn-PS15 support debased the catalytic performance and increased the activation energy of reaction between Fe(CN)(6)(3-) and S(2)O(3)(2-) in a certain degree.  相似文献   

17.
以介孔二氧化硅SBA-15 为载体, 采用等体积浸渍法制备了Fe/SBA-15. 通过X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、透射电镜(TEM)和X射线光电子能谱(XPS)等技术对其进行了表征, 并用于对水溶液中罗丹明B (RhB)的芬顿氧化. 表征结果表明了Fe/SBA-15维持了长程有序的介孔结构, 孔径和比表面积都有所下降, 并呈现棒状体的聚集态, 平均直径为0.6 μm. Fe 以α-Fe2O3的形态同时存在于介孔孔道内外. 在Fe/SBA-15 和H2O2同时存在条件下RhB的去除是吸附和催化氧化降解的协同作用所致, 并且与Fe/SBA-15 投加量密切相关, 但与初始溶液pH 几乎无关. 当Fe/SBA-15 投加量为0.15 g·L-1, RhB 初始浓度为10.0 mg·L-1,H2O2/Fe3+摩尔比为2000:1,初始溶液pH为5.4和反应温度为21 ℃时, RhB去除率达到了93%. Fe/SBA-15的Langmiur 单分子层饱和吸附量为99.11 mg·g-1. 此外, 采用H2O2浸泡方式对使用过的Fe/SBA-15可进行再生,连续6 次循环使用后仍可维持80%的RhB去除率, 且每次使用后Fe浸出浓度都在0.1 mg·L-1 (或者0.6% (质量分数))以下. 基于淬灭实验、UV-Vis 光谱和气相色谱-质谱(GC-MS)联用仪分析的结果, 提出了RhB的去除机理. 非均相芬顿催化剂Fe/SBA-15可用于去除像RhB这样的生物难降解有机物.  相似文献   

18.
Intervalence charge transfer properties were studied for a set of mixed valence complexes incorporating Ru(III) and Fe(II)-centres linked by various saturated and unsaturated bridging ligands (BL). Studies reveal that degree of ground state electronic interaction and coupling between Ru(III) and Fe(II)-centrescanbe attenuated by changing the nature of the bridging ligand. Further, inclusion of the bridging ligand with interrupted π-electron system in a β-CD cavity initiate an optical electron transfer from Fe(II) to Ru(III) which is otherwise not observed.  相似文献   

19.
Microperoxidase-11 has been immobilized on siliceous materials MCM-41 and SBA-15 and on amino-functionalized SBA-15. Resonance Raman spectroscopy has provided solid evidence that the exogenous species occupy the pores of the mesoporous silica materials. Photoreduction of the microperoxidase-11 Fe(III) center has been observed to occur in the immobilized samples and results in a long-lived stable reduced heme. Reoxidation of the heme occurs upon addition of oxygen, and the redox cycle can be repeated numerous times. The source of the electron resulting in reduction of the heme is proposed to originate from the silica matrix, and functionalization of silica surface is suggested to facilitate electron transfer to the heme.  相似文献   

20.
SBA-15负载CeO2纳米晶的溶胶-凝胶一步合成   总被引:2,自引:0,他引:2  
以P123为模板剂, 正硅酸乙酯和硝酸铈为前驱体, 通过溶胶-凝胶路线在酸性条件下合成了SBA-15负载氧化铈(CeO2与SiO2质量比为28.7%)有序介孔材料. 采用热重/差热分析(TGA/DTA)、X射线衍射(XRD)、透射电镜(TEM)和氮气吸附等手段对所合成材料进行了表征. 结果表明, 合成的材料具有类似于SBA-15的结构, 孔径、孔容和比表面积分别为38.7 Å, 0.46 cm3/g和570 m2/g. X射线衍射(XRD)、透射电镜(TEM)、X射线能谱(EDS)和选区电子衍射花样联合表征证实了铈物种以高分散的CeO2纳米晶的形式分布在介孔基体中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号