首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
Commercial LiCoO2 has been modified with MnSiO4 as a novel coating material. The structures, morphologies, overcharge behaviors and thermal stabilities of the pristine and MnSiO4-coated LiCoO2 materials were studied. The MnSiO4-coated LiCoO2 had initial discharge specific capacities of 181.1 and 232.2 mAh g−1 within the potential ranges 2.75–4.5 and 2.75–4.7 V (vs. Li+/Li), respectively. It was found that the overcharge tolerance of the coated cathode was significantly better than that of the pristine LiCoO2 under the same conditions – the discharge specific capacities of the coated cathode at upper charge cutoff voltages of 4.5 and 4.7 V were as high as 168.7 and 154.3 mAh g−1, respectively, after 50 cycles. Moreover, DSC showed that the coated LiCoO2 had a higher thermal stability than the pristine LiCoO2.  相似文献   

2.
以生物质百香果皮为碳源,KHCO3为活化剂,采用同步活化碳化方法制备原位氮掺杂的分级多孔碳材料,将其与单质硫复合制得多孔碳/硫正极材料。通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征技术对制备材料的物相组成、微观形貌、比表面积及孔结构进行研究分析。同时,利用紫外可见吸收光谱研究了多孔碳对多硫化物的吸附作用,用恒电流充放电测试了不同硫含量(60%~80%)的多孔碳/硫复合正极材料的电化学性能。结果表明,制得的多孔碳材料为无定型,具有1 093 m2·g-1的高比表面积和0.63 cm3·g-1的孔容;丰富的多孔结构和原位氮掺杂对多硫化物的物理化学协同吸附作用,有效降低了锂硫电池的“穿梭效应”,提高了电池的放电比容量和循环性能。硫含量为60%的多孔碳/硫复合材料,在0.05C和0.2C倍率下可释放1 057.7和763.4 mAh·g-1的高初始放电比容量,在1C的高倍率下循环300次后的保持率为75%。  相似文献   

3.
Preparation of novel sulfur/polypyrrole (S/PPy) composite consisting well-dispersed sulfur particles anchored on interconnected PPy nanowire network was demonstrated. In such hybrid structure, the as-prepared PPy clearly displays a three-dimensionally cross-linked and hierarchical porous structure, which was utilized in the composite cathode as a conductive network trapping soluble polysulfide intermediates and enhancing the overall electrochemical performance of the system. Benefiting from this unique structure, the S/PPy composite demonstrated excellent cycling stability, resulting in a discharge capacity of 931 mAh g−1 at the second cycle and retained about 54% of this value over 100 cycles at 0.1 C. Furthermore, the S/PPy composite cathode exhibits a good rate capability with a discharge capacity of 584 mAh g−1 at 1  C.  相似文献   

4.
以碳布(CC)作为柔性基底,采用水热法在其表面原位生长松针状网络结构NiCo2O4,制得NiCo2O4@CC复合材料,并应用于锂硫电池。NiCo2O4在碳纤维表面竖直生长形成三维纳米针簇网络,为硫的存储提供更多的空间,有效缓解硫电极的体积膨胀。通过吸附实验,证明了NiCo2O4@CC能有效吸附多硫化物,从而抑制多硫化物的穿梭效应。与CC/S相比(933 mAh·g-1),NiCo2O4@CC/S复合材料用于锂硫电池具有更优异的电池性能,在0.1C下初始放电比容量高达1 467 mAh·g-1,在0.2C下初始放电比容量为1 098 mAh·g-1,经200次循环后,放电比容量仍然保持在879 mAh·g-1,平均每圈衰减率为0.09%,表现出良好的循环性能。  相似文献   

5.
将棕榈纤维经过炭化和氢氧化钾活化制备高度有序的管状碳材料(OCT),并且将其应用于锂硫电池。所制备的OCT具备高的比表面积和大的孔体积,可以有效地储存硫,合成方法简单且成本较低。同时,所制备的S@OCT复合物呈现出优异的电化学性能。载硫量为65%(w/w)的S@OCT复合材料在0.2C(1C=1 672 mA·g-1)的倍率下库伦效率接近于100%,其首圈容量高达1 255.2 mAh·g-1(1.8 mAh·cm-2),并且100圈后容量保持在756.9 mAh·g-1(1.09 mAh·cm-2)。使用5C的大电流测试时,其首圈容量达到了649.1 mAh·g-1(0.93 mAh·cm-2),且在100圈后容量保持在504.2 mAh·g-1(0.72 mAh·cm-2)。  相似文献   

6.
在锂硫电池正极材料的研究中,碳材料可以有效改善电池倍率及循环性能。为了提高锂硫电池的高倍率放电性能,通过水热合成的方法,制备了由非均匀粒径碳球组成的碳材料。与硫热合成后,硫均匀分布在碳材料表面及周围,复合材料含硫量为52wt%。0.2C放电电流下,首次放电比容量为1 174 m Ah·g-1,100次循环后放电比容量为788 m Ah·g-1。在4C的放电电流下,放电比容量稳定维持在600 m Ah·g-1,循环过程中,库伦效率高于90%。该碳材料有良好的导电网络,且制备方便,成本低廉,对于穿梭效应和放电过程中的膨胀效应有一定的抑制作用,是一种优秀的正极材料。  相似文献   

7.
在锂硫电池正极材料的研究中,碳材料可以有效改善电池倍率及循环性能.为了提高锂硫电池的高倍率放电性能,通过水热合成的方法,制备了由非均匀粒径碳球组成的碳材料.与硫热合成后,硫均匀分布在碳材料表面及周围,复合材料含硫量为52wt%.0.2C放电电流下,首次放电比容量为1174mAh·g-1,100次循环后放电比容量为788mAh·g-1.在4C的放电电流下,放电比容量稳定维持在600mAh·g-1,循环过程中,库伦效率高于90%.该碳材料有良好的导电网络,且制备方便,成本低廉,对于穿梭效应和放电过程中的膨胀效应有一定的抑制作用,是一种优秀的正极材料.  相似文献   

8.
Nanocrystalline ZnMn2O4 is prepared by a polymer-pyrolysis route and used as a novel anode for lithium ion batteries. XRD and HRTEM studies reveal that the products are highly phase-pure and 30–60 nm in size. Galvanostatic cycling of ZnMn2O4 electrode at 100 mA g−1 (about 0.52 mA cm−2) between 0.01 and 3.0 V up to 50 cycles exhibits almost stable cycling performance between 10 and 50 cycles with only an average capacity fade of 0.20% per cycle and the electrode still maintains a capacity of 569 mAh g−1 after 50 cycles.  相似文献   

9.
锂硫电池中较差的循环稳定性和倍率性能是实现锂硫电池商业化的技术障碍,其主要原因之一是多硫化物在硫电极内的电化学转化速率较为缓慢。为此,我们以ZIF-9为前驱体,采用先碳化,再酸化刻蚀,最后硒化的方法合成了含少量催化剂的CoSe修饰氮掺杂多孔碳(CoSe/NC)电极材料,以期提高硫电极内多硫化物的电化学转化动力学性能,并通过流动液相三电极体系对该材料进行电化学动力学表征。结果显示,相较于对比材料,CoSe/NC能够加快多硫化物的氧化还原反应速率,在0.2mA·cm-2电流密度下,多硫化物氧化还原反应在CoSe/NC电极上有最小的反应过电位;同时,在0.1 V过电位下,各氧化还原反应也有最大的响应电流。因此,将CoSe/NC作为硫宿主材料组装电池展现了优异的电化学性能:在1C(1C=1 675 mA·g-1)下初始放电比容量为1 068 mAh·g-1,经过500次循环后,可逆容量仍保持在693 mAh·g-1。另外,在3C的高电流密度下,放电比容量可高达819 mAh·g-1。  相似文献   

10.
Platelike CoO/carbon nanofiber (CNF) composite materials with porous structures are synthesized from the thermal decomposition and recrystallization of β-Co(OH)2/CNF precursor without the need for a template or structure-directing agent. As negative electrode materials for lithium-ion batteries, the platelike CoO/CNF composite delivers a high reversible capacity of 700 mAh g−1 for a life extending over hundreds of cycles at a constant current density of 200 mA g−1. More importantly, the composite electrode shows significantly improved rate capability and electrochemical reversibility. Even at a current of 2 C, the platelike CoO/CNF composite maintain a capacity of 580 mAh g−1 after 50 discharge/charge cycles. The improved cycling stability and rate capability of the CoO/CNF composite electrodes may be attributed to synergistic effect of the porous structural stability and improved conductivity through CNF connection.  相似文献   

11.
制备了以十二烷基硫酸钠(SDS)为模板的介孔碳,并将介孔碳和单质硫采用熔融渗透法复合制得硫/介孔碳复合材料。SEM、TEM和BET结果显示介孔碳成直径约为500 nm的大小均一的球体,存在孔径为2 nm的微孔;单质硫充分填充在介孔碳的微孔中。以硫/介孔碳复合物作为锂硫电池正极材料时显示出高的电化学性能。初始放电容量高达1519 mAh·g-1,在200 mA·g-1的电流密度下充放电200个循环后依然能保持在835 mAh·g-1。硫/介孔碳复合材料的高倍率性能和优异的循环稳定性,源于介孔碳良好的导电性及其孔结构的固硫作用。  相似文献   

12.
Silicon monoxide/graphite/multi-walled carbon nanotubes (SiO/G/CNTs) material was prepared by ball milling followed by chemical vapor deposition method and characterized by X-ray diffraction, scanning electron microscopy (SEM), galvanostatic charge–discharge, and AC impedance spectroscopy, respectively. The results revealed that SiO/G/CNTs exhibited an initial specific discharge capacity of 790 mAh g−1 with a columbic efficiency of 65%. After 100 cycles, a high reversible capacity of 495 mAh g−1 is still retained. The improved electrochemical properties were due to beneficial SEI by the SEM and EIS results.  相似文献   

13.
A series of carbon-coated LiMn1−xFexPO4 (x = 0, 0.1, 0.2, 0.3, 0.4) materials are successfully constructed using glucose as carbon sources via sol-gel processes. The morphology of the synthesized material particles are more regular and particle sizes are more homogeneous. The carbon-coated LiMn0.8Fe0.2PO4 material obtains the discharge specific capacity of 152.5 mAh·g−1 at 0.1 C rate and its discharge specific capacity reaches 95.7 mAh·g−1 at 5 C rate. Iron doping offers a viable way to improve the electronic conductivity and lattice defects of materials, as well as improving transmission kinetics, thereby improving the rate performance and cycle performance of materials, which is an effective method to promote the electrical properties.  相似文献   

14.
Orthorhombic magnesium manganese silicate (Mg1.03Mn0.97SiO4) was prepared and evaluated as a new cathode material for rechargeable magnesium batteries. Although the electrochemical activity of the Mg1.03Mn0.97SiO4 synthesized by high-temperature solid-state reaction is low, the magnesium storage capacity of nanosized Mg1.03Mn0.97SiO4 prepared by modified sol–gel route and in situ carbon coating reaches 244 mAh g−1. The capacity increase mechanism during charge/discharge cycling was also preliminary studied.  相似文献   

15.
In this paper, an efficient laser surface ablation strategy for producing binder-free carbon-coated nanocotton CoO-Co integrated anode is reported. The fabrication process introduces in-situ growing nanocotton-like CoO on the surface of Co foil via ablating with a nanosecond laser. After that, coated with dopamine as carbon source, the CoO-Co composite foil is heated in Argon atmosphere to form a CoO@C-Co foil as an anode of LIB. The laser surface ablation exhibits high fabrication speed (~10 minutes) and significantly reduces the processing time. The obtained binder-free CoO@C-Co integrated anode shows a unique cotton-like villous structure with large specific surface area and an active material/current collector integrated architecture, which provides a stabilized rapid electronic conduction path. When tested as an anode for LIBs, the CoO@C-Co integrated anode possesses superior performance: First discharge capacity of 1301.5 mAh g−1 is achieved at a current density of 0.1 A g−1. Also at a high current density of 1.5 A g−1, the second discharge capacity of 791.7 mAh g−1 is achieved. After 800 cycles, reversible capacities of 799.8 mAh g−1 can still be achieved with an average coulombic efficiency of nearly 100%. In addition, this strategy is suitable for the production of other carbon coated transition metal oxides integrated anodes, such as NiO@C-Ni, Fe2O3/Fe3O4@C-Fe, and CuO/Cu2O@C-Cu integrated anodes.  相似文献   

16.
采用碳布(CC)为柔性基底,通过水热法制备了MnO2/CC及N掺杂MnO2/CC无黏结剂负极材料,借助X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、比表面积测试和恒电流充放电对材料进行了结构表征及电化学性能测试。结果表明N掺杂MnO2/CC具有良好的倍率性能和循环稳定性。在0.1 A·g-1的电流密度下,其首次充电比容量为948.8 mAh·g-1,经过不同倍率测试后电流密度恢复至0.1 A·g-1时仍然保持有907.9 mAh·g-1的可逆比容量,容量保持率为95.7%。在1 A·g-1的大电流密度下,其首次充电比容量为640.3 mAh·g-1,循环100次后仍然保持有529.9 mAh·g-1的可逆比容量,容量保持率为82.8%,可逆比容量远高于商用MnO2。  相似文献   

17.
采用水热和溶胶-凝胶相结合的方法,制备了具有良好电化学性能的新型多壁碳纳米管-Na3V2(PO43(MWCNT-NVP)复合材料(MWCNT的质量分数为8.74%). 通过场发射扫描电子显微镜表征可知,MWCNT分散在NVP纳米颗粒之间,并起到“电子导电线”的作用. 与纯Na3V2(PO43相比,MWCNT-NVP具有更高的比容量和更优异的循环性能. 在0.2C(35.2 mA·g-1)的电流密度下,3.0-4.5 V的电压范围内,MWCNT-NVP的初始比容量为82.2 mAh·g-1. 循环100次以后,比容量为72.3 mAh·g-1. 在1.0-3.0 V充放电时,MWCNT-NVP的初始容量为100.6 mAh·g-1. 100次循环以后,其容量保持率高达90%. 同时,交流阻抗测试表明,由于MWCNT的存在,MWCNT-NVP的导电性有了显著的提高. 以上结果表明,MWCNT-NVP是一种良好的锂离子电池电极材料.  相似文献   

18.
The macroporous Li3V2(PO4)3/C composite was synthesized by oxalic acid-assisted carbon thermal reaction, and the common Li3V2(PO4)3/C composite was also prepared for comparison. These samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and electrochemical performance tests. Based on XRD and SEM results, the sample has monoclinic structure and macroporous morphology when oxalic acid is introduced. Electrochemical tests show that the macroporous Li3V2(PO4)3/C sample has a high initial discharge capacity (130 mAh g−1 at 0.1 C) and a reversible discharge capacity of 124.9 mAh g−1 over 20 cycles. Moreover, the discharge capacity of the sample is still 91.5 mAh g−1, even at a high rate of 2 C, which is better than that of the sample with common morphology. The improvement in electrochemical performance should be attributed to its improved lithium ion diffusion coefficient for the macroporous morphology, which was verfied by cyclic voltammetry and electrochemical impedance spectroscopy.  相似文献   

19.
利用水热合成法制备纳米NiO与多壁碳纳米管(MWCNTs)以及芳纶纸(AP)制备出一种新型复合夹层(NMAP)。NMAP夹层具有三维多孔结构,不但减小了活性物质的损失,还可以捕获可溶性多硫化物;NMAP夹层具有较强的化学吸附聚硫化物的能力。利用透射电子显微镜(TEM)、扫描电镜(SEM)、X射线衍射(XRD)等对复合夹层进行结构和性能的表征。电化学测试结果表明,NMAP夹层高性能锂硫电池在0.05C倍率下首次放电比容量达到1437 mAh·g^-1,活性物质的利用率高达85.8%;在4C大倍率下放电比容量仍然达到668 mAh·g^-1,且库伦效率仍然保持在99.1%;显示出良好的倍率和循环性能。  相似文献   

20.
Polypyrrole (PPy) nanowire was synthesized through a surfactant mediated approach. The sulfur–polypyrrole (S–PPy) composite materials were prepared by heating the mixture of element sulfur and polypyrrole nanowire. The materials were characterized by FTIR, SEM. PPy with special morphology serves as conductive additive, distribution agent and absorbing agents, which effectively enhanced the electrochemical performance of sulfur. The initial discharge capacity of the active materials was 1222 mA h g−1 the remaining capacity is 570 mA h g−1 after 20th cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号