首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conductive carbon cement (CCC) was evaluated as matrix material for the preparation of electrodes bulk-modified with electrocatalysts. For pure CCC electrodes the background current characteristics were examined. In acidic or neutral phosphate buffers the useful electrode potential range was from −0.3 to + 1.0 V vs. SCE, while in 0.1 mol 1−1 NaOH it was from −0.3 to + 0.7 V. The electrochemical reversibility of CCC electrodes was examined by measuring the standard rate constants for the reduction of hexacyanoferrate (III) and the oxidation of hydroquinone, using cyclic voltammetry (CV) and rotating disk experiments. The reversibility of a CCC electrode was comparable with that of a freshly polished glassy carbon electrode and better than that of carbon paste electrodes. CCC was used as matrix for the preparation of electrodes bulk-modified with cuprous oxide and cobalt phthalocyanine (CoPC). With a Cu2O-CCC electrode the oxidation potential of glucose, which shows sluggish kinetics at unmodified carbon electrodes, was strongly reduced. The kinetics of the mediated glucose oxidation has been studied with a rotating disk electrode. It was shown that at glucose concentrations higher than approximately 1 mmol l−1 the electrochemical regeneration of the catalyst becomes rate-determining. The Cu2O-CCC modified electrode has been applied with a constant potential in flow-injection analysis for the determination of glucose. The long-term stability of the electrode was studied; repeated injections of a glucose solution during a period of 6 h yielded a relative standard deviation of the peak height of 1.8% (n = 57). In CV experiments the electrocatalytic activity of CoPC was shown for the oxidation of various compounds such as penicillamine, hydrazine and bile acids. Application of the CoPC-CCC electrode for the detection of bile acids in flow-through detection with a constant or pulsed potential failed, due to a rapid deactivation of the electrode.  相似文献   

2.
以聚乙烯不干胶掩膜版法结合金属溅射沉积技术在FR-4玻璃纤维版上制作了由6个金膜工作电极(1 mm×2 mm)、1个大面积金膜对电极(2 mm×13 mm)和1个厚膜Ag/AgCl参比电极构成的集成化金膜阵列电极系统,并利用电化学手段对阵列电极系统进行了考察。研究结果表明,K3Fe(CN)6在厚膜Ag/AgCl/1.0 mol/L NaCl参比电极上的式电位与商业Ag/AgCl/3.0 mol/L NaCl参比电极相差0.067 V;参比电极放置1个月后,测量电位未发生明显变化。利用扫描电化学显微镜对工作电极表面平整度进行考察,结果表明工作电极表面具有较好的平整度。通过测量H2SO4还原峰面积评价了工作电极电化学面积的批内、批间一致性;通过K3Fe(CN)6在电极上的Ipa/Ipc比值评价了工作电极电化学特性的批内、批间一致性。结果表明,阵列电极面积和电化学特性具有良好的批内和批间一致性。对集成化金膜阵列电极系统的研究结果表明,聚乙烯不干胶掩膜版法结合金属溅射沉积技术制作的阵列电极能够满足电化学电极的要求,可作为电化学生物传感器的基础电极。  相似文献   

3.
《Electroanalysis》2005,17(9):762-768
The direct electrochemistry of cytochrome c (cyt‐c) has been investigated on exfoliated graphite (EG) electrodes. The as‐polished and roughened (using SiC emery sheet) EG surfaces are inactive for the direct electron transfer. However, when the EG electrode was sonicated before the experiment, a pair of redox waves were obtained for freely diffusing cyt‐c in the solution phase. The formal potential was found to be 0.01 V (vs. SCE) in 0.1 M phosphate buffer at a pH of 7.1. The electrochemical response for the adsorbed cyt‐c on sonicated EG electrodes, which is shown to have carbonyl functional groups on its surface, shows nearly reversible voltammograms in the same electrolyte. However, the formal potential in the adsorbed state is more negative than that observed for the solution phase cyt‐c. A structure based on an open heme conformation proposed by Hildebrandt and Stockburger is probably present on the EG surface. It is suggested that the electrochemistry at the EG electrode is essentially governed by favourable electrostatic interactions.  相似文献   

4.
In this paper, we described a glucose biosensor based on the co-electrodeposition of a poly(vinylimidazole) complex of [Os(bpy)2Cl](+/2+) (PVI-Os) and glucose oxidase (GOX) on a gold electrode surface. The one-step co-electrodeposition method provided a better control on the sensor construction, especially when it was applied to microsensor construction. The modified electrode exhibited the classical features of a kinetically fast redox couple bound to an electrode surface and the redox potential of the redox polymer/enzyme film was 0.14 V (vs. SCE). For a scan rate of up to 200 mV s(-1), the peak-to-peak potential separation was less than 25 mV. In the presence of glucose, a typical catalytic oxidation current was observed, which reached a plateau at 0.25 V (vs. SCE). Under the optimal experimental conditions, the steady-state electrooxidation current measured at 0.30 V (vs. SCE) was linear to the glucose concentration in the range of 0-30 mM. Successful attempts were made in blood sample analysis.  相似文献   

5.
The performance and analytical characteristics of a glassy carbon glutaraldehyde immobilized glucose oxidase electrode have been established with regard to the direct detection of hydrogen peroxide produced from the reaction of glucose with oxygen. Measurements were performed at + 1.1 V vs. SCE, and selectivity was obtained by casting the surface with a cellulose acetate membrane. Results compared favorably with the classical platinum-enzyme probe. The mechanism of ascorbic acid interference in hydrogen peroxide detection is reported. Mediated detection was also investigated for oxidase enzymes (glucose oxidase and xanthine oxidase) immobilized on the bare glassy carbon electrode. The probes were characterized using a specific enzyme mediator in solution (phenazine methosulfate or dichlorophenol-indophenol) plus hexacyanoferrate(III) as an electrochemical mediator. The electrode was poised at + 0.36 V vs. SCE for the detection of hexacyanoferrate(II). The advantages of this dual mediator configuration include high stability and sensitivity of the electrochemical signal and the ability to use less positive potentials for increased selectivity. Application to other enzymes, such as hydrogenases, using such a binary redox configuration is suggested.  相似文献   

6.
《Electroanalysis》2005,17(14):1251-1259
The influence of different surface pretreatment procedures on the electrochemical response of a polycrystalline gold electrode was evaluated. Mechanical polishing with slurry alumina (M), chemical oxidation with H2SO4/H2O2 (C), electrochemical polishing (potential cycling between ?0.1 V and 1.2 V vs. SCE) (E), chemical reduction with ethanol, and combinations among these treatments were employed to change the surface electrode characteristics. The efficiency of the proposed pretreatments was evaluated by electrochemical responses towards the redox couple ferri(II/III)‐ammonium sulfate and by the formation of a self‐assembly monolayer of 3‐mercaptopropionic acid (3 MPA SAM) on gold electrodes. The procedure (C) allowed important gold surfaces activation. Using procedures (C) and (E) the roughness of polycrystalline gold surfaces was significantly minimized and more reproducible surfaces could be obtained. From the profile of reductive desorption of 3 MPA SAM it was possible to verify that reduced gold surfaces generated better packed monolayers than oxidized ones and a comparative study using CV and DPV techniques showed that between the two desorption peaks, the one localized at more negative potential values corresponds to the cleavage of Au‐S bond from the chemisorbed thiol. In general, the improvement in the studied electrochemical responses could not only be attributed to an increase in the real surface area of the electrode, but to the chemical surface states set off by the pretreatment procedure.  相似文献   

7.
The self-assembly of 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (TPyP) on Au(111) electrodes was investigated. The adlayer structure was found to depend on the electrode potential. At positive potentials (>0.5V(SCE)), a disordered layer of TPyP is formed on the Au(111) electrode. STM images showed that the disordered molecules are immobile. At negative potentials (-0.2V(SCE)), however, the molecules are highly mobile and can no longer be imaged by STM, though they remain on the surface. At intermediate potentials (-0.2 to +0.2V(SCE)), the TPyP formed a highly ordered adlayer. Once the ordered adlayer is formed, it persists even after the potential is stepped to higher values (0.5-0.8 V(SCE)). These results can be explained by the role of potential modulated adsorbate-substrate interaction and surface mobility. This suggests the intriguing prospect of using electrode potential to tune surface interactions and to drive surface processes, e.g., molecular self-assembly, in electrochemical systems.  相似文献   

8.
Nitrogenous amorphous carbon (a‐CNx) thin films were deposited by radio‐frequency cathodic magnetron sputtering (13.56 MHz) on polished and etched titanium disks. While these films are cheaper to prepare than commonly reported carbon‐based electrodes, the usable electrochemical window in aqueous solution is within the same range and spans from ?1.5 to +1.8 V vs. SCE. The electrochemical reactivity was tested using the ferri‐ferrocyanide redox couple as a function of the thin films preparation parameters. The obtained electrochemical properties allow the use of these a‐CNx thin films for stripping electroanalysis of cations in water, minimizing potential solvent reactivity. Cadmium and copper were used to test these detection abilities. Better analytical properties (notably sensitivity and linearity) were obtained as compared to a commercial boron doped diamond electrode. Preliminary competition/interaction experiments for these two cations were performed.  相似文献   

9.
The electrochemical oxidation of the hydroxide ion was studied on a gold rotating disc electrode (RDE), in aqueous NaOH solutions in the presence of lithium perchlorate as a supporting electrolyte. By potentiodynamic polarization within the limits −1.6 V and +1.6 V vs. SCE, it was demonstrated that the overvoltage of the OH ion oxidation reaction may be significantly reduced with a 5 min long delay at the vertex cathodic potential of −1.6 V. This finding was explained in terms of the type of gold oxide formed on the gold surface under different experimental conditions.  相似文献   

10.
The electrocatalytic oxidation of oxalate at several carbon based electrodes including basal plane (BPPG) and edge plane (EPPG) pyrolytic graphite and glassy carbon (GC) electrode, was studied. The electrodes were examined for the sensing of oxalate ions in aqueous solutions and all three electrodes showed a response to oxalate additions. The peak of oxalate oxidation at BPPG electrode appeared at lower potential, +1.13 V vs. SCE, than at EPPG (+1.20 V vs. SCE) and GC electrode (+1.44 V vs. SCE). Oxalate oxidation at BPPG electrode was studied in more details for response characteristics (potential and current), effects of pH, temporal characteristics of response potential and current. The results indicated that oxalate oxidation proceeds as two‐electron process at the BPPG electrode with a transfer coefficient β and a diffusion coefficient D evaluated to be 0.45 and 1.03 (±0.04)×10?5 cm2 s?1 respectively. The BPPG electrode was found to be suitable for oxalate determination in aqueous media showing linear response to oxalate concentration with a sensitivity of 0.039 AM?1 and a limit of detection of 0.7 μM.  相似文献   

11.
碱性介质中甘氨酸在纳米金膜电极上的吸附和氧化   总被引:4,自引:0,他引:4  
运用原位红外反射光谱(in situ FTIRS)和电化学石英晶体微天平(EQCM)在分子水平上研究了碱性介质中甘氨酸在纳米金膜电极上的解离吸附和氧化过程.结果表明,甘氨酸在很低的电位下(-0.8 V, vs SCE)就可发生解离吸附.其解离产物氰基(CN-)与电极表面存在较强的化学吸附作用,形成AuCN-物种(红外吸收谱峰位于2100 cm-1附近).吸附在纳米金膜表面的CN-给出红外吸收显著增强、红外谱峰方向倒反和半峰宽增加的异常红外效应特征.吸附态CN-在低电位抑制H2O和OH-的吸附,当电位高于0.2 V可氧化产生OCN-;进一步升高电位到0.3 V则形成.溶液相物种OCN-和对应的红外吸收峰分别为2169 cm-1和2145 cm-1.实验结果指出,金以的形式溶解是导致电极表面质量显著减少的主要原因.  相似文献   

12.
本文对草酸修饰电极的制作、痕量铅在草酸修饰电极上的反应机理和电化学特性作了研究。采用阳极溶出伏安法,测定铅的灵敏度比玻碳电极提高7.5倍,在1.0~15.0ng·/mL铅浓度范围内溶出峰高与铅浓度呈良好的线性关系。连续测定12次变异系数为3.0%。利用草酸修饰电极对人尿中痕量铅进行了测定,结果良好。  相似文献   

13.
利用L-半胱氨酸自组装膜修饰金电极(L-Cys,Au/SAMs), 在0.05mol/L H_2SO_4 底液中研究了 Na_2SeO_3 的电化学特性.在0.00~1.30 V (vs. SCE) 电位范围内对微量Na_2SeO_3进行循环伏安扫描,发现L-Cys, Au/SAMs修饰电极在峰电位0.89 V处有灵敏的Se的氧化溶出峰.通过比较裸金电极和修饰电极在Na_2SeO_3 溶液中的电化学特性发现,修饰电极通过巯基中的S与Na_2SeO_3发生氧化还原作用生成Se,且修饰电极对沉积在电极表面的Se的氧化过程具有催化作用.根据Na_2SeO_3在单分子膜上的电化学行为,提出了单分子膜中硫(Au-S)与Se(Ⅳ)作用生成Se的反应机理、Se电化学催化氧化机理及巯基化合物通过生成纳米硒生物吸收Se的类生物膜模型.  相似文献   

14.
 It is shown by capacitive monitoring that the self-assembly of alkanethiols on gold electrodes and desorption of these self-assembled monolayers from the electrodes are controlled by the electrode potential. At neutral pH, chemical adsorption of alkanethiols was observed at an electrode potential of +300 mV vs SCE, but only physical adsorption was detected when the electrode potential was −1400 mV vs SCE. At electrode potentials between these values (−300 mV, −600 mV), chemical adsorption of alkanethiols occurred, but the alkanethiol monolayers were not stable in the absence of the alkanethiol in the bulk solution and were desorbed from the gold electrode. The desorption rate was higher at more negative electrode potentials. These results can be used in designing methods for electrically addressable immobilization of different receptors on (micro)electrode arrays. This has been demonstrated by deposition of two different types of alkanethiols onto a two-electrode array. Received June 24, 1998. Revision October 19, 1998.  相似文献   

15.
用电化学循环伏安法和电化学石英晶体微天平(EQCM)技术研究了Sb在Au电极上不可逆吸附的电化学过程. 研究结果表明, 在-0.25 V到0.18 V(vs SCE)范围内, Sb可在Au电极上稳定吸附, 并且在0.15 V附近出现特征氧化还原峰. 根据EQCM实验数据, 在电位0.18 V时, Sb在Au电极上的氧化产物是Sb2O3; 同时Sb的吸附阻止了电解液中阴离子和水在Au电极上的吸附. 当电极电位超过0.20 V时, Sb2O3会被进一步氧化成Sb5+化合物, 同时逐渐从Au电极表面脱附.  相似文献   

16.
The oxidation of glucose at low concentrations was studied at electrodeposited platinum electrodes in 0.1 M HClO4 using an electrochemical quartz crystal microbalance (EQCM). Experiments were performed over the whole potential range and then over selected regions of potential to investigate the processes giving rise to specific features in the cyclic voltammetry and mass response. In the region of potential where adsorbed hydrogen is present, EQCM experiments reveal the presence of adsorbate derived from glucose through the removal of features associated with the presence of adsorbed anions in the background electrolyte. Cycling over this potential region leads to a decrease in the mass of the electrode as the coverage of poisoning species increases. In the double-layer region of potential an increase in mass is seen as the adsorbate is oxidized and removed from the electrode surface, and is suggested to be a result of the replacement of adsorbed residues (formed from progressive oxidation of glucose) by both anions and fresh reactant. Restriction of the electrode potential to values above 0.2 V (SCE) prevents poison formation and mass responses indicate the presence of adsorbed glucose between 0.2 V and 0.6 V. Mass responses accompanying voltammetry and injection experiments also indicate that glucose or species derived from it can adsorb on an oxidized platinum surface.  相似文献   

17.
通过自组装方法将修饰有二茂铁基团的富T序列DNA分子(DNA-Fc)固定在金电极表面,得到了一种基于DNA修饰电极的电化学汞离子(Hg2+)传感器.当溶液中有Hg2+存在时,Hg2+可与修饰电极上DNA的T碱基发生较强的特异结合,形成T-Hg2+-T发卡结构,使DNA分子构象发生改变,其末端具有电化学活性的二茂铁基团远离电极表面,电化学响应随之发生变化.示差脉冲伏安法(DPV)结果显示:DNA末端二茂铁基团的还原峰在0.26V(vs饱和甘汞电极(SCE))附近,峰电流随溶液中Hg2+浓度的增加而降低;Hg2+浓度范围在0.1nmol·L-1-1μmol·L-1时,电流相对变化率与Hg2+浓度的对数呈现良好的线性关系.该修饰电极对Hg2+的检测限为0.1nmol·L-1,可作为痕量Hg2+检测的电化学生物传感器.干扰实验也表明,该传感器对Hg2+具有良好的特异性与灵敏度.  相似文献   

18.
Glucose oxidase showed direct electrochemical transfer at glassy carbon electrodes immobilized with carbon nanotube‐gold colloid (CNT‐Au) composites with poly(diallydimethylammonium chloride) (PDDA) coatings. The modified electrode (GC/CNT/Au/PDDA‐GOD) was employed for the amperometric determination of glucose. Under optimal conditions, the biosensor displayed linear response to glucose from 0.5 to 5 mM with a sensitivity of 2.50 mA M?1 at an applied potential of ?0.3 V (vs. Ag|AgCl reference).  相似文献   

19.
L-半胱氨酸自组装膜修饰金电极的电化学特性   总被引:6,自引:0,他引:6  
采用电化学石英晶体微天平(EQCM)和循环伏安法(CV)研究了L-半胱氨酸在金电极表面形成自组装膜的机理及其电化学性质.结果表明, L-半胱氨酸分子在金电极表面有特性吸附,而且在等电点pH附近因静电引力和氢键作用形成分子对,从而自组装形成双层膜.该膜电极在0.2 mol•L-1的醋酸缓冲溶液中,于-0.2~0.5 V(vs SCE)间CV扫描出现了一对稳定的氧化还原峰,并对抗坏血酸的氧化有良好的催化作用.  相似文献   

20.
Amperometric enzymatic biosensors have high selectivity and simplicity in use. It has advantages over other analytical methods in biochemistry, pharmacology, so it evokes strong interests1,2. Generally, the detection mode involved in oxidase based biosensors is often based on the electrochemical detection of hydrogen peroxide directly3,4. However the direct oxidation of hydrogen peroxide requires a relative high working potential (exceeding ca. 0.6 V vs. SCE), at which many biological sub…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号