首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A fast but approximative method to apply flexible constraints to bond lengths in molecular dynamics simulations is presented and the effects of the approximation are investigated. The method is not energy conserving, but coupling to a temperature bath results in stable simulations. The high frequencies from bond-length vibrations are successfully removed from the system while maintaining the flexibility of the bonds. As a test liquid neopentane is simulated at different pressures. Energetic and dynamic properties are not affected by the new flexible constraint simulation method.  相似文献   

2.
Here, an efficient method that predicts natural transition pathways between two endpoint states of an allosteric protein has been proposed. This method helps create structures that bridge these endpoints through multiple iterative and unbiased molecular dynamics simulations with explicit water. Difference distance matrices provide an approach for identifying states involving concerted slow motion. A series of structures are readily generated along the transition pathways of adenylate kinase. Predicted structures may be useful for an initial pathway to evaluate free energy landscapes via umbrella sampling and chain‐of‐states methods. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
In two-dimensional conformational analysis the current practice is to perform an energy minimization for all possible combinations of two dihedral angles in the molecule, in a fixed order, and apply a certain dihedral angle step-size. A newly developed method is presented in which the order of the evaluation points on the energy-surface is not fixed, but is dependent on all previous results in a way which we call “the method of prudent ascent.” In this method the most promising calculation is carried out first, thus minimizing the risk of atomic collisions. In order to be able to take care of the many additional degrees of conformational freedom present in, e.g., carbohydrate molecules, all minimizations are performed using a set of different promising starting conformations on the basis of previous calculations, and only the lowest energy result for each point is saved. An application of the method to conformational analysis of methyl-cellobiose and the artificial sweetener trichlorogalactosucrose is also presented.  相似文献   

4.
In this work, we present a tentative step toward the efficient implementation of polarizable molecular mechanics force fields with GPU acceleration. The computational bottleneck of such applications is found in the treatment of electrostatics, where higher-order multipoles and a self-consistent treatment of polarization effects are needed. We have implemented a GPU accelerated code, based on the Tinker program suite, for the computation of induced dipoles. The largest test system used shows a speedup factor of over 20 for a single precision GPU implementation, when comparing to the serial CPU version. A discussion of the optimization and parametrization steps is included. Comparison between different graphic cards and CPU-GPU embedding is also given. The current work demonstrates the potential usefulness of GPU programming in accelerating this field of applications.  相似文献   

5.
Computational studies of proteins based on empirical force fields represent a powerful tool to obtain structure-function relationships at an atomic level, and are central in current efforts to solve the protein folding problem. The results from studies applying these tools are, however, dependent on the quality of the force fields used. In particular, accurate treatment of the peptide backbone is crucial to achieve representative conformational distributions in simulation studies. To improve the treatment of the peptide backbone, quantum mechanical (QM) and molecular mechanical (MM) calculations were undertaken on the alanine, glycine, and proline dipeptides, and the results from these calculations were combined with molecular dynamics (MD) simulations of proteins in crystal and aqueous environments. QM potential energy maps of the alanine and glycine dipeptides at the LMP2/cc-pVxZ//MP2/6-31G* levels, where x = D, T, and Q, were determined, and are compared to available QM studies on these molecules. The LMP2/cc-pVQZ//MP2/6-31G* energy surfaces for all three dipeptides were then used to improve the MM treatment of the dipeptides. These improvements included additional parameter optimization via Monte Carlo simulated annealing and extension of the potential energy function to contain peptide backbone phi, psi dihedral crossterms or a phi, psi grid-based energy correction term. Simultaneously, MD simulations of up to seven proteins in their crystalline environments were used to validate the force field enhancements. Comparison with QM and crystallographic data showed that an additional optimization of the phi, psi dihedral parameters along with the grid-based energy correction were required to yield significant improvements over the CHARMM22 force field. However, systematic deviations in the treatment of phi and psi in the helical and sheet regions were evident. Accordingly, empirical adjustments were made to the grid-based energy correction for alanine and glycine to account for these systematic differences. These adjustments lead to greater deviations from QM data for the two dipeptides but also yielded improved agreement with experimental crystallographic data. These improvements enhance the quality of the CHARMM force field in treating proteins. This extension of the potential energy function is anticipated to facilitate improved treatment of biological macromolecules via MM approaches in general.  相似文献   

6.
We present results of a theoretical analysis of the phosphorylation reaction in cAMP-dependent protein kinase using a combined quantum mechanical and molecular mechanics (QM/MM) approach. Detailed analysis of the reaction pathway is provided using a novel QM/MM implementation of the nudged elastic band method, finite temperature fluctuations of the protein environment are taken into account using free energy calculations, and an analysis of hydrogen bond interactions is performed on the basis of calculated frequency shifts. The late transfer of the substrate proton to the conserved aspartate (D166), the activation free energy of 15 kcal/mol, and the slight exothermic (-3 kcal/mol) character of the reaction are all consistent with the experimental data. The near attack conformation of D166 in the reactant state is maintained by interactions with threonine-201, asparagine-177, and most notably by a conserved water molecule serving as a strong structural link between the primary metal ion and the D166. The secondary Mg ion acts as a Lewis acid, attacking the beta-gamma bridging oxygen of ATP. This interaction, along with a strong hydrogen bond between the D166 and the substrate, contributes to the stabilization of the transition state. Lys-168 maintains a hydrogen bond to a transferring phosphoryl group throughout a reaction process. This interaction increases in the product state and contributes to its stabilization.  相似文献   

7.
A quantum mechanics/molecular mechanics molecular dynamics simulation was performed for liquid water to investigate structural and dynamical properties of this peculiar liquid. The most important region containing a central reference molecule and all nearest surrounding molecules (first coordination shell) was treated by Hartree-Fock (HF), post-Hartree-Fock [second-order Moller-Plesset perturbation theory (MP2)], and hybrid density functional B3LYP [Becke's three parameter functional (B3) with the correlation functional of Lee, Yang, and Parr (LYP)] methods. In addition, another HF-level simulation (2HF) included the full second coordination shell. Site to site interactions between oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen atoms of all ab initio methods were compared to experimental data. The absence of a second peak and the appearance of a shoulder instead in the gO-O graph obtained from the 2HF simulation is notable, as this feature has been observed so far only for pressurized or heated water. Dynamical data show that the 2HF procedure compensates some of the deficiency of the HF one-shell simulation, reducing the difference between correlated (MP2) and HF results. B3LYP apparently leads to too rigid structures and thus to an artificial slow down of the dynamics.  相似文献   

8.
Molecular docking falls into the general category of global optimization problems because its main purpose is to find the most stable complex consisting of a receptor and its ligand. Conformational space annealing (CSA), a powerful global optimization method, is incorporated with the Tinker molecular modeling package to perform molecular docking simulations of six receptor-ligand complexes (3PTB, 1ULB, 2CPP, 1STP, 3CPA, and 1PPH) from the Protein Data Bank. In parallel, Monte Carlo with the minimization (MCM) method is also incorporated into the Tinker package for comparison. The energy function, consisting of electrostatic interactions, van der Waals interactions, and torsional energy terms, is calculated using the AMBER94 all-atom empirical force field. Rigid docking simulations for all six complexes and flexible docking simulations for three complexes (1STP, 3CPA, and 1PPH) are carried out using the CSA and the MCM methods. The simulation results show that the docking procedures using the CSA method generally find the most stable complexes as well as the native-like complexes more efficiently and accurately than those using the MCM, demonstrating that CSA is a promising search method for molecular docking problems.  相似文献   

9.
10.
The review focuses on the unique spectral features of pyrene that can be utilized to investigate protein structure and conformation. Pyrene is a fluorescent probe that can be attached covalently to protein side chains, such as sulfhydryl groups. The spectral features of pyrene are exquisitely sensitive to the microenvironment of the probe: it exhibits an ensemble of monomer fluorescence emission peaks that report on the polarity of the probe microenvironment, and an additional band at longer wavelengths, the appearance of which reflects the presence of another pyrene molecule in spatial proximity (~10 ?). Its high extinction coefficient allows us to study labeled proteins in solution at physiologically relevant concentrations. The environmentally- and spatially-sensitive features of pyrene allow monitoring protein conformation, conformational changes, protein folding and unfolding, protein-protein, protein-lipid and protein-membrane interactions.  相似文献   

11.
We present a method which uses the results of a molecular Kohn-Sham calculation at a reference geometry to approximate the energy at many different geometries. The Kohn-Sham electron density of the reference geometry is decomposed into atomic fragments, which move with the nuclei to approximate the density at a new geometry and the energy is evaluated with the Harris-Foulkes functional. Preliminary results for a biological quantum-mechanics/molecular-mechanics trajectory are promising: the errors of reference-geometry Harris-Foulkes (compared to full self-consistent Kohn-Sham) for the PBE exchange-correlation functional have the same magnitude as the difference between the energies of PBE and BLYP.  相似文献   

12.
A procedure to automatically find the transition states (TSs) of a molecular system (MS) is proposed. It has two components: high‐energy chemical dynamics simulations (CDS), and an algorithm that analyzes the geometries along the trajectories to find reactive pathways. Two levels of electronic structure calculations are involved: a low level (LL) is used to integrate the trajectories and also to optimize the TSs, and a higher level (HL) is used to reoptimize the structures. The method has been tested in three MSs: formaldehyde, formic acid (FA), and vinyl cyanide (VC), using MOPAC2012 and Gaussian09 to run the LL and HL calculations, respectively. Both the efficacy and efficiency of the method are very good, with around 15 TS structures optimized every 10 trajectories, which gives a total of 7, 12, and 83 TSs for formaldehyde, FA, and VC, respectively. The use of CDS makes it a powerful tool to unveil possible nonstatistical behavior of the system under study. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
14.
We present an automated conformational analysis program, CAMDAS (Conformational Analyzer with Molecular Dynamics And Sampling). CAMDAS performs molecular dynamics (MD) calculations for a target molecule and samples conformers from the trajectory of the MD. The program then evaluates the similarities between each of the sampled conformers in terms of the root- mean-square deviations of the atomic positions, clusters similar conformers, and finally prints out the clustered conformers. This MD-based conformational analysis is a broadly used method, and CAMDAS is intended to provide a convenient framework for the method. CAMDAS has the ability to find the representative conformers automatically from an arbitrarily given structure of the molecule. The accuracy of the program was examined using N- acetylalanine-N-methylamide, and the obtained result was consistent with that of the systematic search method. In the test calculation of cyclodecane, CAMDAS could identify most of the known conformers and their conformational enantiomers by examining only 5000 conformers. In addition, the potential-scaled method, which we have developed previously as an accelerating technique for MD, could find two additional conformers of cyclodecane that have not been reported. CAMDAS presents a convenient way to find the energetically possible conformers of a molecule, which is needed especially in the early stage of drug design.  相似文献   

15.
Using a Monte Carlo method, the deformation behavior of single polymer coils was investigated. Random walks were used to verify the stretching procedure. The prediction of Pincus and DeGennes for self avoiding walks could be confirmed. The simulations at finite temperatures showed a transition from entropy to energy controlled behavior. The coils underwent a clear nonaffine deformation pattern.  相似文献   

16.
The combination of quantum mechanics (QM) with molecular mechanics (MM) offers a route to improved accuracy in the study of biological systems, and there is now significant research effort being spent to develop QM/MM methods that can be applied to the calculation of relative free energies. Currently, the computational expense of the QM part of the calculation means that there is no single method that achieves both efficiency and rigor; either the QM/MM free energy method is rigorous and computationally expensive, or the method introduces efficiency-led assumptions that can lead to errors in the result, or a lack of generality of application. In this paper we demonstrate a combined approach to form a single, efficient, and, in principle, exact QM/MM free energy method. We demonstrate the application of this method by using it to explore the difference in hydration of water and methane. We demonstrate that it is possible to calculate highly converged QM/MM relative free energies at the MP2/aug-cc-pVDZ/OPLS level within just two days of computation, using commodity processors, and show how the method allows consistent, high-quality sampling of complex solvent configurational change, both when perturbing hydrophilic water into hydrophobic methane, and also when moving from a MM Hamiltonian to a QM/MM Hamiltonian. The results demonstrate the validity and power of this methodology, and raise important questions regarding the compatibility of MM and QM/MM forcefields, and offer a potential route to improved compatibility.  相似文献   

17.
18.
A molecular mechanics force field has been developed which accurately reproduces experimental solid state structures and conformer interconversion barriers for a series of sterically congested diaryl and triaryl phosphines and some of their chalcogenide and Cr(CO)5 derivatives.  相似文献   

19.
Covalent attachment of solvent-sensitive fluorescent dyes to proteins is a powerful tool for studying protein conformational changes, ligand binding, or posttranslational modifications. We report here new merocyanine dyes that make possible the quantitation of such protein activities in individual living cells. The quantum yield of the new dyes is sharply dependent on solvent polarity or viscosity, enabling them to report changes in their protein environment. This is combined with other stringent requirements needed in a live cell imaging dye, including appropriate photophysical properties (excitation >590 nm, high fluorescence quantum yield, high extinction coefficient), good photostability, minimal aggregation in water, and excellent water solubility. The dyes were derivatized with iodoacetamide and succinimidyl ester side chains for site-selective covalent attachment to proteins. A novel biosensor of Cdc42 activation made with one of the new dyes showed a 3-fold increase in fluorescence intensity in response to GTP-binding by Cdc42. The dyes reported here should be useful in the preparation of live cell biosensors for a diverse range of protein activities.  相似文献   

20.
YETI, an interactive molecular mechanics program for drug-design applications on small-molecule protein complexes, is described. To model short-range interactions in better agreement with experimental data, its force-field energy expression includes directional potential functions for H-bonds, salt linkages, and metal ligand interactions. The program works on an internal coordinate concept and uses a conjugate-gradient minimizer. YETI is available for distribution through the author. The program has been used to model details of small-molecule binding to the enzyme human carbonic anhydrase I. The impact of the directional potential functions on the geometry of H-bonds and metal-ligand interactions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号