首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, the Fourier transform Raman and Fourier transform infrared spectra of 2-chloronicotinic acid (2-CNA) are recorded in the solid phase. The molecular geometry, vibrational frequencies, infrared intensities and Raman scattering activities of 2-CNA in ground state have been calculated by using ab initio Hartree–Fock (HF) and density functional (B3LYP and B3PW91) methods with 6-31G(d) and 6-311G(d) basis sets level. On the basis of the comparison between calculated and experimental results and the comparison with related molecule, assignments of fundamental vibrational modes are examined. The optimized geometric parameters (bond lengths and bond angles) obtained by using HF show the best agreement with the experimental values of 2-CNA. Comparison of the observed fundamental vibrational frequencies of 2-CNA and calculated results by density functional (B3LYP and B3PW91) and Hartree–Fock methods indicates that B3LYP is superior to the scaled Hartree–Fock and B3PW91 approach for molecular vibrational problems.  相似文献   

2.
FT-IR and FT-Raman spectra of the biomolecule 5-aminouracil were recorded in the regions 400–4000 cm−1 and 10–3500 cm−1, respectively. The observed vibrational wavenumbers were analyzed and assigned to different normal modes of vibration of the molecule. Density functional calculations were performed to support wavenumber assignments of the observed bands. A comparison with the molecule of uracil was made, and specific scale factors were employed in the predicted wavenumbers of 5-aminouracil. With the purpose of study the important molecule 5-aminouracil, its equilibrium geometry and harmonic wavenumbers were calculated for the first time by the B3LYP DFT method. The vibrational wavenumbers were compared with IR and Raman experimental data. Also good reproduction of the experimental wavenumbers is obtained and the % error is very small. All the tautomeric forms of 5-aminouracil were determined and optimized. The dimer forms were also simulated. The energy, atomic charges and dipole moments were discussed and several general conclusions were underlined.  相似文献   

3.
In this work, the experimental and theoretical spectra of nicotinamide (C6H6N2O) are studied. FT-IR and FT-Raman spectra of title molecule in the liquid phase have been recorded in the region 4000–100 cm?1. The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree–Fock and density functional method (B3LYP) with the 6-31+G*(d, p) and 6-31++G* (d, p)basis set. The vibrational frequencies have been calculated and scaled values have been compared with the experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found in good agreement. The DFT-B3LYP/6-31++G (d, p) calculations have been found are more reliable than the ab initio HF/6-31+G (d, p) calculations for the vibrational study of nicotinamide. The optimized geometric parameters (bond lengths and bond angles) are compared with experimental values of the molecule. The alteration of vibrational bands due to the substitutions in the base molecule is also investigated from their characteristic region of linked spectrum.  相似文献   

4.
The molecular geometry, IR intensities, harmonic and anharmonic vibrational frequencies of 4-, 5-, 6-chloroindole in the ground state were calculated by DFT/B3LYP level of theory using the 6-31G (d, p) basis set. To give complete and reasonable vibrational assignments, the normal coordinate analysis has been performed for 4-chloroindole, 5-chloroindole and 6-chloroindole. The effect of position of chloro atom on the molecular properties (electron density, dipole moments and energies) of the indole aromatic system is examined on the basis of calculation data for 4-, 5- and 6-chloroindoles.  相似文献   

5.
This work deals with the IR and Raman spectroscopy of 4-(2-furanylmethyleneamino) antipyrine (FAP), 4-benzylideneaminoantipyrine (BAP) and 4-cinnamilideneaminoantipyrine (CAP) by means of experimental and quantum chemical calculations. The equilibrium geometries, harmonic frequencies, infrared intensities and Raman scattering activities were calculated by density functional B3LYP method with the 6-31G(d) basis set. The comparisons between the calculated and experimental results covering molecular structures, assignments of fundamental vibrational modes and thermodynamic properties were investigated. The optimized molecular geometries have been compared with the experimental data obtained from XRD data, which indicates that the theoretical results agree well with the corresponding experimental values. For the three compounds, comparisons and assignments of the vibrational frequencies indicate that the calculated frequencies are close to the experimental data, and the IR spectra are comparable with some slight differences, whereas the Raman spectra are different clearly and the strongest Raman scattering actives are relative tightly to the molecular conjugative moieties linked through their Schiff base imines. The thermodynamic properties (heat capacities, entropies and enthalpy changes) and their correlations with temperatures were also obtained from the harmonic frequencies of the optimized strucutres.  相似文献   

6.
The vibrational spectra of 3,4-diamino benzophenone (DABP) have been computed using B3LYP methodology and 6-31G* and 6-31G** basis sets. The solid phase FTIR and FT-Raman spectra were recorded in the region 4000-400 cm-1 and 3500-100 cm-1, respectively. A close agreement was achieved between the observed and calculated frequencies by employing normal coordinate calculations. The observed and simulated spectra were found to be well comparable.  相似文献   

7.
The Molecular structure, conformational stability and vibrational frequencies of succinonitrile NCCH2CH2CN have been investigated with ab initio and density functional theory (DFT) methods implementing the standard 6-311++G* basis set. The potential energy surfaces (PES) have been explored at DFT-B3LYP, HF and MP2 levels of theory. In agreements with previous experimental results, the molecule was predicted to exist in equilibrium mixture of trans and gauche conforms with the trans form being slightly lower in energy. The vibrational frequencies and the corresponding vibrational assignments of succinonitrile in both C2h and C2 symmetry were examined theoretically and the calculated Infrared and Raman spectra of the molecule were plotted. Observed frequencies for normal modes were compared with those calculated from normal mode coordinate analysis carried out on the basis of ab initio and DFT force fields using the standard 6-311++G* basis set of the theoretical optimized geometry. Theoretical IR intensities and Raman activities are reported.  相似文献   

8.
The FT-Raman (3500-100 cm−1) and FT-IR (4000-450 cm−1) spectra of 2-chloro-4-fluorobenzophenone were recorded in the solid phase. Density functional theory calculations with B3LYP/6-31G (d, p) basis set was used to determine the ground state molecular geometries (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities and Raman activities of this compound. Potential energy distributions (PEDs) and normal modes, for the spectral data computed at B3LYP/6-31G (d, p) level, have also been obtained from force-field calculations. The wavenumbers found after scaling of the force field showed very good agreement with the experimentally determined values. A comparison of the theoretical spectra and experimental FT-IR and FT-Raman spectra of the title molecule has been made and full vibrational assignments of the observed spectra have been proposed. On the basis of vibrational analyses, the thermodynamic properties of title compound at different temperatures have been calculated.  相似文献   

9.
10.
The molecular structures and vibrational spectra of the three isomers of pyridinecarboxamide (picolinamide, nicotinamide, isonicotinamide) were calculated with the Density Functional Theory (DFT) method using the B3LYP function and the 6-31++G(d,p), Z2PolX, Z3PolX basis sets. The calculations were performed by using the Gaussian98W packet program set. The total energy distributions (TED) of the vibrational modes of these molecules were calculated by using the Scale 2.0 program and the vibrational modes of the molecules were determined. The Scaled Quantum Mechanical (SQM) method was used in the scaling procedure. In the experimental part of the study, the solid phase FT-IR and Micro Raman spectra of the three isomers of pyridinecarboxamide have been recorded in the range of 4000-650 and 1200-100 cm−1, respectively. The calculated wavenumbers were compared to the corresponding experimental values. As a result, the observed bands of the three isomers of pyridinecarboxamide were assigned with good accuracy.  相似文献   

11.
Organic–inorganic hybrid material of formula (C4H3SC2H4NH3)2[PbI4] was synthesized and studied by X-ray diffraction, Infrared absorption, Raman scattering, UV–Visible absorption and photoluminescence measurements. The molecule crystallizes as an organic–inorganic two-dimensional (2D) structure built up from infinite PbI6 octahedra surrounded by organic cations. Such a structure may be regarded as quantum wells system in which the inorganic layers act as semiconductor wells and the organic cations act as insulator barriers. Room temperature IR and Raman spectra were recorded in the 520–3500 and 10–3500 cm−1 frequency range, respectively. Optical absorption measurements performed on thin films of (C4H3SC2H4NH3)2[PbI4] revealed three distinct bands at 2.4, 2.66 and 3.25 eV. We also report DFT calculations of the electric dipole moments (μ), polarizability (α), the static first hyperpolarizability (β) and HOMO–LUMO analysis of the title compound investigated by GAUSSIAN 09 package. The calculated static first Hyperpolarizability is equal to 11.46 × 10−31 esu.  相似文献   

12.
FT-IR and FT-Raman spectra of 5-methoxysalicylic acid (5MeOSA) have been experimentally reported in the region of 4000–10 cm−1 and 4000–50 cm−1, respectively. The optimized geometric parameters, conformational equilibria, normal mode frequencies and corresponding vibrational assignments of 5MeOSA (C8H8O4) are theoretically examined by means of B3LYP hybrid density functional theory (DFT) method together with 6-31++G(d,p) basis set. Furthermore, reliable vibrational assignments have made on the basis of potential energy distribution (PED) calculated and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of 5MeOSA have been predicted. Calculations are employed for different conformations of 5MeOSA, both in gas phase and in solution. Solvent effects are investigated using chloroform and dimethylsulfoxide. All results indicate that B3LYP method is able to provide satisfactory results for predicting vibrational frequencies and the structural parameters, vibrational frequencies and assignments, IR and Raman intensities of 5MeOSA are solvent dependent.  相似文献   

13.
The FTIR and FT-Raman spectra of 2,4-dichloro-6-nitrophenol (2,4-DC6NP) has been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of (2,4-DC6NP) were obtained by the ab initio and DFT levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311+G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

14.
The ortho-meta-, and para-fluoro substituted anilines are prototype molecules for investigation of the interactions of both the amino group and the fluorine atom with the aromatic ring. The molecular structures, natural atomic charges and theoretical anharmonic Raman and infrared spectra of the three fluoroaniline isomers have been calculated by using the density functional B3LYP method with the extended 6-311++G(df,pd) basis set. The Raman and infrared spectra of 2FA, 3FA, and 4FA have been recorded. The detailed vibrational assignments of the experimental spectra have been made on the basis of the calculated potential energy distributions, PEDs. The effect of fluorine substituent on the aniline ring geometry and charge distribution, the nature of the characteristic “marker bands” and a quenching of intensities of some bands are discussed. It is shown that the frequencies of the NH2 stretching vibrations depend on the degree of pyramidalization of the C-NH2 group, in the isomers. In 2FA and 3FA, the NH2 stretching frequencies are higher than those in 4FA. This corresponds to a more flattened structure of the amino group in 2FA and 3FA, in comparison to 4FA.  相似文献   

15.
The X-ray and vibrational spectroscopic analysis of para-nitraminopyridine N-oxide are reported. The crystals of investigated compound belong to P2(1) of the monoclinic system, Z=4, a=3.735 A, b=11.767 A, c=14.679 A and beta=93.27 degrees . Room temperature powder infrared and Raman spectra of the title compound and its deuterated analogue were measured. The molecular structure of p-nitraminopyridine N-oxide has been calculated with the aid of density functional (B3LYP) method with the extended 6-311++G(d,p) basis set. The calculated geometrical parameters of investigated molecule in gas phase were compared with experimental X-ray data. The harmonic frequencies, potential energy distribution (PED) and IR intensities of p-nitroaminopyridine N-oxide and its deuterated analogue were calculated with B3LYP method. The assignment of the experimental spectra has been made on the basis of the calculated PED. The time depend Hartree-Fock (TDHF) method was used for calculations of hyperpolarizability beta coefficient.  相似文献   

16.
The Fourier transform infrared (FTIR) and FT-Raman spectra of 2-chloro-6-methoxypyridine have been recorded in the range 3700-400 and 3700-100 cm(-1), respectively. The complete vibrational assignment and analysis of the fundamental modes of the compound was carried out using the observed FTIR and FT-Raman data. The vibrational frequencies determined experimentally were compared with the theoretical frequencies computed by DFT gradient calculations (B3LYP method) employing the 6-31G(d,p), cc-pVTZ and/6-311++G(d,p) basis sets for the optimised geometry of the compound. The geometry and normal modes of vibration obtained from the DFT methods are in good agreement with the experimental data. The normal co-ordinate analysis was also carried out using DFT force fields utilising Wilson's FG matrix method. The influence of the substituents bulky chlorine atom and the methoxy group on the spectral characteristics of the compound has been discussed. The electronic spectrum determined by TD-DFT method is compared with the observed electronic spectrum.  相似文献   

17.
Quantum chemistry calculations have been performed using Gaussian03 program to compute optimized geometry, harmonic vibrational frequency along with intensities in IR and Raman spectra and atomic charges at RHF/6-31+G*, B3LYP/6-31+G* and B3LYP/6-31++G* levels for 2-mercaptobenzothiazole (MBT, C7H5NS2) and 2-mercaptobenzoxazole (MBO, C7H5NOS) in the ground state. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR and FT-Raman spectra. The results show that the scaled theoretical vibrational frequencies is very good agreement with the experimental values. A detailed interpretation of the infrared and Raman spectra of 2-mercaptobenzothiazole and 2-mercaptobenzoxazole was reported. Comparison of calculated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes.  相似文献   

18.
In this work, the experimental and theoretical UV, NMR, and vibrational features of nicotinic acid N-oxide (abbreviated as NANO, C(6)H(5)NO(3)) were studied. The ultraviolet (UV) absorption spectrum of studied compound that dissolved in water was examined in the range of 200-800nm. FT-IR and FT-Raman spectra in solid state were observed in the region 4000-400cm(-1) and 3500-50cm(-1), respectively. The (1)H and (13)C NMR spectra in DMSO were recorded. The geometrical parameters, energies and the spectroscopic properties of NANO were obtained for all four conformers from density functional theory (DFT) B3LYP/6-311++G(d,p) basis set calculations. There are four conformers, C(n), n=1-4 for this molecule. The computational results identified the most stable conformer of title molecule as the C1 form. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. (13)C and (1)H nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies, were performed by CIS approach. Finally the calculation results were applied to simulate infrared, Raman, and UV spectra of the title compound which show good agreement with observed spectra.  相似文献   

19.
The infrared and Raman spectra of 2-chloro-2,2-difluoroacetamide (ClF2CC(O)NH2) have been recorded and analyzed with the complement of results derived from computational chemistry calculations. Thus, delocalization effects and stabilization energies have been computed for the title molecule and a complete assignment has been also proposed. 13C, 19F and 1H NMR chemical shifts and coupling constants have been also measured for this substance.  相似文献   

20.
The FTIR and FT Raman spectra of p-alkylcalix[8]arenes (alkyl = tert-butyl, isononyl) were recorded. Analysis of IR spectra showed that the cyclic cooperative intramolecular hydrogen bond is realized in calix[8]arene. It was found that the strength of the cyclic cooperative intramolecular hydrogen bond in the series of alkyl derivatives of calix[8]arenes depends very little on the replacement of the p-tert-butyl groups by the more bulky isononyl group. From our data follows that the orientation of aromatic fragments in calixarene molecules depends on the type of alkyl substituent.An analysis of the changes in the IR spectra with heating and dissolution shows that the conformation of the “pleated-loop” is retained in p-tert-butylcalix[8]arene. It turned out that the intramolecular hydrogen bond is a “probe” of the conformation of calixarene molecules and IR spectroscopy is a unique method that allows one to follow the slightest nuances of changes in the H-bound system of these supermolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号