首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interest of the majorizing (scalar) sequences lies in that, from their convergence, we can deduce the convergence of an iterative method in Banach spaces. We propose a new technique to construct majorizing sequences that generalizes that given by Kantorovich for Newton’s method.  相似文献   

2.
From Kantorovich’s theory we establish a general semilocal convergence result for Newton’s method based fundamentally on a generalization required to the second derivative of the operator involved. As a consequence, we obtain a modification of the domain of starting points for Newton’s method and improve the a priori error estimates. Finally, we illustrate our study with an application to a special case of conservative problems.  相似文献   

3.
Generalized differentiability conditions for Newton's method   总被引:1,自引:0,他引:1  
The use of majorizing sequences is the usual way to prove theconvergence of Newton's method. An alternative technique tomajorizing sequences is provided in this paper, in which threescalar sequences are used, so that the analysis of convergenceis simplified when the traditional convergence condition isrelaxed. An application to a nonlinear integral equation isalso given, which is also solved and the solution approximatedby a discretization process.  相似文献   

4.
We provide a local as well as a semilocal convergence analysis for two-point Newton-like methods in a Banach space setting under very general Lipschitz type conditions. Our equation contains a Fréchet differentiable operator F and another operator G whose differentiability is not assumed. Using more precise majorizing sequences than before we provide sufficient convergence conditions for Newton-like methods to a locally unique solution of equation F(x)+G(x)=0. In the semilocal case we show under weaker conditions that our error estimates on the distances involved are finer and the information on the location of the solution at least as precise as in earlier results. In the local case a larger radius of convergence is obtained. Several numerical examples are provided to show that our results compare favorably with earlier ones. As a special case we show that the famous Newton-Kantorovich hypothesis is weakened under the same hypotheses as the ones contained in the Newton-Kantorovich theorem.  相似文献   

5.
We present sufficient convergence conditions for two-step Newton methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The advantages of our approach over other studies such as Argyros et al. (2010) [5], Chen et al. (2010) [11], Ezquerro et al. (2000) [16], Ezquerro et al. (2009) [15], Hernández and Romero (2005) [18], Kantorovich and Akilov (1982) [19], Parida and Gupta (2007) [21], Potra (1982) [23], Proinov (2010) [25], Traub (1964) [26] for the semilocal convergence case are: weaker sufficient convergence conditions, more precise error bounds on the distances involved and at least as precise information on the location of the solution. In the local convergence case more precise error estimates are presented. These advantages are obtained under the same computational cost as in the earlier stated studies. Numerical examples involving Hammerstein nonlinear integral equations where the older convergence conditions are not satisfied but the new conditions are satisfied are also presented in this study for the semilocal convergence case. In the local case, numerical examples and a larger convergence ball are obtained.  相似文献   

6.
Fang Lu 《Applicable analysis》2013,92(8):1567-1586
In the context of Euclidean spaces, we present an extension of the Newton-like method for solving vector optimization problems, with respect to the partial orders induced by a pointed, closed and convex cone with a nonempty interior. We study both exact and inexact versions of the Newton-like method. Under reasonable hypotheses, we prove stationarity of accumulation points of the sequences produced by Newton-like methods. Moreover, assuming strict cone-convexity of the objective map to the vector optimization problem, we establish convergence of the sequences to an efficient point whenever the initial point is in a compact level set.  相似文献   

7.
We present a new semilocal convergence analysis for the Secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Our analysis is based on the weaker center-Lipschitz concept instead of the stronger Lipschitz condition which has been ubiquitously employed in other studies such as Amat et al. (2004)  [2], Bosarge and Falb (1969)  [9], Dennis (1971)  [10], Ezquerro et al. (2010)  [11], Hernández et al. (2005, 2000)   and , Kantorovich and Akilov (1982)  [14], Laasonen (1969)  [15], Ortega and Rheinboldt (1970)  [16], Parida and Gupta (2007)  [17], Potra (1982, 1984–1985, 1985)  ,  and , Proinov (2009, 2010)   and , Schmidt (1978) [23], Wolfe (1978)  [24] and Yamamoto (1987)  [25] for computing the inverses of the linear operators. We also provide lower and upper bounds on the limit point of the majorizing sequences for the Secant method. Under the same computational cost, our error analysis is tighter than that proposed in earlier studies. Numerical examples illustrating the theoretical results are also given in this study.  相似文献   

8.
The famous Newton–Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newton's method to a solution of an equation. Here we present a “Kantorovich type” convergence analysis for the Gauss–Newton's method which improves the result in [W.M. Häußler, A Kantorovich-type convergence analysis for the Gauss–Newton-method, Numer. Math. 48 (1986) 119–125.] and extends the main theorem in [I.K. Argyros, On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math. 169 (2004) 315–332]. Furthermore, the radius of convergence ball is also obtained.  相似文献   

9.
We use nondiscrete mathematical induction to extend the applicability of the Secant methods for solving equations in a Banach setting. Our approach has the following advantages over earlier works under the same information: weaker sufficient convergence conditions; tighter error bounds on the distances involved and more information on the location of the solution. Numerical examples where our results apply but earlier ones fail to solve nonlinear equation as well as tighter error bounds are also provided in this study.  相似文献   

10.
We establish a new semilocal convergence results for Inexact Newton-type methods for approximating a locally unique solution of a nonlinear equation in a Banach spaces setting. We show that our sufficient convergence conditions are weaker and the estimates of error bounds are tighter in some cases than in earlier works [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30] and [31]. Special cases and numerical examples are also provided in this study.  相似文献   

11.
We introduce the new idea of recurrent functions to provide a semilocal convergence analysis for an inexact Newton-type method, using outer inverses. It turns out that our sufficient convergence conditions are weaker than in earlier studies in many interesting cases (Argyros, 2004 [5] and [6], Argyros, 2007 [7], Dennis, 1971 [14], Deuflhard and Heindl, 1979 [15], Gutiérrez, 1997 [16], Gutiérrez et al., 1995 [17], Häubler, 1986 [18], Huang, 1993 [19], Kantorovich and Akilov, 1982 [20], Nashed and Chen, 1993 [21], Potra, 1982 [22], Potra, 1985 [23]).  相似文献   

12.
This paper deals with the application of multilevel least-change Newton-like methods for solving twice continuously differentiable equality constrained optimization problems. We define multilevel partial-inverse least-change updates, multilevel least-change Newton-like methods without derivatives and multilevel projections of fragments of the matrix for Newton-like methods without derivatives. Local andq-superlinear convergence of these methods is proved. The theorems here also imply local andq-superlinear convergence of many standard Newton-like methods for nonconstrained and equality constraine optimization problems.  相似文献   

13.
The semilocal convergence properties of Halley’s method for nonlinear operator equations are studied under the hypothesis that the second derivative satisfies some weak Lipschitz condition. The method employed in the present paper is based on a family of recurrence relations which will be satisfied by the involved operator. An application to a nonlinear Hammerstein integral equation of the second kind is provided.  相似文献   

14.
We provide sufficient conditions for the semilocal convergence of Newton’s method to a locally unique solution of a nonlinear operator equation containing operators that are Fréchet-differentiable of order at least two, in a Banach space setting. Numerical examples are also provided to show that our results apply to solve nonlinear equations in cases earlier ones cannot [J.M. Gutiérrez, A new semilocal convergence theorem for Newton’s method, J. Comput. Appl. Math. 79(1997) 131-145; Z. Huang, A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math. 47 (1993) 211-217; F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Mathematica 5 (1985) 71-84].  相似文献   

15.
In this paper, we developed two new families of sixth-order methods for solving simple roots of non-linear equations. Per iteration these methods require two evaluations of the function and two evaluations of the first-order derivatives, which implies that the efficiency indexes of our methods are 1.565. These methods have more advantages than Newton’s method and other methods with the same convergence order, as shown in the illustration examples. Finally, using the developing methodology described in this paper, two new families of improvements of Jarratt method with sixth-order convergence are derived in a straightforward manner. Notice that Kou’s method in [Jisheng Kou, Yitian Li, An improvement of the Jarratt method, Appl. Math. Comput. 189 (2007) 1816-1821] and Wang’s method in [Xiuhua Wang, Jisheng Kou, Yitian Li, A variant of Jarratt method with sixth-order convergence, Appl. Math. Comput. 204 (2008) 14-19] are the special cases of the new improvements.  相似文献   

16.
The aim of this article is to develop improved trial methods for the solution of a generalized exterior Bernoulli free boundary problem. At the free boundary, we prescribe the Neumann boundary condition and update the free boundary with the help of the remaining Dirichlet boundary condition. Appropriate update rules are obtained by expanding the state's Dirichlet data at the actual boundary via a Taylor expansion of first and second order. The resulting trial methods converge linearly for both cases, although the trial method based on the second order Taylor expansion is much more robust. Nevertheless, via results of shape sensitivity analysis, we are able to modify the update rules such that their convergence is improved. The feasibility of the proposed trial methods and their performance is demonstrated by numerical results.  相似文献   

17.
Newton’s method is often used for solving nonlinear equations. In this paper, we show that Newton’s method converges under weaker convergence criteria than those given in earlier studies, such as Argyros (2004) [2, p. 387], Argyros and Hilout (2010)[11, p. 12], Argyros et al. (2011) [12, p. 26], Ortega and Rheinboldt (1970) [26, p. 421], Potra and Pták (1984) [36, p. 22]. These new results are illustrated by several numerical examples, for which the older convergence criteria do not hold but for which our weaker convergence criteria are satisfied.  相似文献   

18.
The backward heat equation is a typical ill-posed problem. In this paper, we shall apply a dual least squares method connecting Shannon wavelet to the following equation ut (x, y, t) = u xx (x, y, t) + uyy (x, y, t), x ∈ R, y ∈ R, 0 ≤ t 1, u(x, y, 1) = (x, y), x ∈ R, y ∈ R. Motivated by Regińska's work, we shall give two nonlinear approximate methods to regularize the approximate solutions for high-dimensional backward heat equation, and prove that our methods are convergent.  相似文献   

19.
20.
In this paper, a general family of Steffensen-type methods with optimal order of convergence for solving nonlinear equations is constructed by using Newton’s iteration for the direct Newtonian interpolation. It satisfies the conjecture proposed by Kung and Traub [H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Math. 21 (1974) 634-651] that an iterative method based on m evaluations per iteration without memory would arrive at the optimal convergence of order 2m−1. Its error equations and asymptotic convergence constants are obtained. Finally, it is compared with the related methods for solving nonlinear equations in the numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号