首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The anticancer properties of cisplatin and palladium(II) complexes stem from the ability of the cis-MCl2 fragment to bind to DNA bases. However, cisplatin also interacts with non-cancer cells, mainly through bonding molecules containing -SH groups, resulting in nephrotoxicity. This has aroused interest in the design of palladium(II) complexes of improved activity and lower toxicity. The reaction of DNA bases with palladium(II) complexes with chelating N,N/donors of the cis-MCl2 configuration constitutes a model system that may help explore the mechanism of cisplatin's anticancer activity. Heterocyclic compounds are found widely in nature and are essential to many biochemical processes. Amongst these naturally occurring compounds, the most thoroughly studied is that of pyrimidine. This was one of the factors that encouraged this study into the kinetics and mechanism of the interaction of 2-aminopyrimidine (2-NH2-Pym) with dichloro-{1-alkyl-2-(α-naphthylazo)imidazole}palladium(II) [Pd(α-NaiR)Cl2, 1] and dichloro-{1-alkyl-2-(β-naphthylazo)imidazole}palladium(II) [Pd(β-NaiR)Cl2, 2] complexes where the alkyl R = Me (a), Et (b), or Bz (c).  相似文献   

2.
Picolinic acid (picH) reacts with [Pd(α-/β-NaiR)Cl2] [α-/β-NaiR = 1-alkyl-2-(naphthyl-α-/β-azo)imidazole] in acetonitrile (MeCN) medium to give [Pd(α-/β-NaiR)(pic)](ClO4). The products are characterized by spectroscopic techniques (FT-IR, UV–Vis, NMR). The reaction kinetics show first order dependence of rate on each of the concentration of Pd(II) complex and picH. Addition of LiCl to the reaction decreases the rate of reaction and has proved the cleavage of Pd–Cl bond at the rate-determining step. Thermodynamic parameters (Δ and Δ) are determined from variable temperature kinetic studies. The magnitude of the second order rate constant, k2 increases as in the order: Pd(NaiEt)Cl2 < Pd(NaiMe)Cl2 <  Pd(NaiBz)Cl2 as well as Pd(β-NaiR)Cl2 <  Pd(α-NaiR)Cl2.  相似文献   

3.
8-Quinolinol (HQ) reacts with [Pd(α-/β-NaiR)Cl2] [α-/β-NaiR = 1-alkyl-2-(naphthyl-α-/β-azo)imidazole] in acetonitrile (MeCN) solution to give [Pd(α-/β-NaiR)(Q)](ClO4). The products are characterized by spectroscopic techniques (FT-IR, UV–Vis, NMR). The reaction kinetics show a first order dependence of rate on each of the concentration of the metal complex and HQ. Addition of LiCl to the reaction retarded the rate of reaction and has proved the cleavage of the Pd–Cl bond as the rate-determining step. Thermodynamic parameters (ΔH° and ΔS°) are determined from variable temperature kinetic studies. The magnitude of the second order rate constant, k2, increases as in the order: Pd(NaiEt)Cl2 < Pd(NaiMe)Cl2 < Pd(NaiBz)Cl2 as well as Pd(β-NaiR)Cl2 < Pd(α-NaiR)Cl2.  相似文献   

4.
Nucleophilic substitution of Pd(RaaiR′)Cl2 [(RaaiR′ = 1-alkyl-2-(arylazo)imidazole, p-R-C6H4-N=N-C3H2NN-1-R′; where R = H(a)/ Me(b)/ Cl(c) and R′ = Et(1)/Bz(2)] with 2-Mercaptopyridine (2-SH-Py) in acetonitrile (MeCN) at 298 K, to form [Pd2(2-S-Py)4], has been studied spectrophotometrically under pseudo-first-order conditions and the analyses support the nucleophilic association path. The reaction follows the rate law, Rate = {k 0 + k [2-SH-Py] 0 2 }[Pd(RaaiR′)Cl2]: first order in Pd(RaaiR′)Cl2 and second order in 2-SH-Py. The rate of the reaction follows the order: Pd(RaaiEt)Cl2 (1) < Pd(RaaiBz)Cl2 (2) and Pd(MeaaiR′)Cl2 (b) < Pd(HaaiR′)Cl2 (a) < Pd(ClaaiR′)Cl2 (c). External addition of Cl (LiCl) and HCl suppresses the rate (Rate ∝ 1/[Cl]0 & ∝1/[HCl]0). The reactions have been studied at different temperatures (293–308 K) and activation parameters (Δ H° and Δ S°) of the reactions were calculated from the Eyring plot and support the proposed mechanism.  相似文献   

5.
Biscyclometallated [(M(N∧N))2(μ-dphpm)](ClO4)2 and [(N∧N)Pd(μ-dphpm)Pt(N∧N)]Cl2 complexes [M = Pd(II), Pt(II); (N∧N) ethylenediamine (En), 1,10-phenanthroline (phen); dphpm2 — bisdeprotonated form of 4,6-diphenylpyrimidine)] have been characterized by the 1H NMR, electronic absorption and emission spectroscopy, and also cyclic voltammetry methods. The lowest unoccupied molecular orbital (LUMO) of biscyclometallated complexes with ethylenediamine, responsible for low-energy photo- and electro-stimulated processes irrespective of the metal nature, is assigned to the π* orbital mainly localized on the pyrimidine part of the bridging ligand. In the case of complexes with phenanthroline chelating ligands, the replacement of one or two palladium metal centers [{Pd(phen)}2(μ-dphpm)]2+ by platinum centers changes the LUMO nature of the complexes for the π* orbital mainly localized on the peripheral metal-complex fragment {Pt(phen)}.  相似文献   

6.
The 2-picolylpalladium(II) complex [{Pd(CH2Py)Cl(PPh3)}2] (CH2Py=2-picolyl) (I), prepared from 2-picolyl chloride and [Pd(PPh3)4], was treated with lithium bromide, silver acetate, 4-picoline (pic) and silver perchlorate, thallium acetylacetonate{Tl(acac)}, sodium dimenthyldithiocarbamate-water-(1/2) {Na(dmdc). 2 H2O}, and 1,2-bis(diphenylphospino)ethane (dppe) to yield [{PdBr(CH2Py)(PPh3)}2] (II), [{Pd(CH2Py)OAc(PPh3)}2] (III), [{Pd(Ch2Py)(pic)(PPh3)}2](ClO4)2 (IV), [Pd(CH2Py)(acac)(PPh3)] (V), [Pd(CH2Py)(dmdc)(PPh3)] (VI), and [Pd(Ch2Py)Cl(dppe)] (VII), respectively. Halogen abstraction from VII using silver perchlorate afforded an ionic complex [{Pd(CH2Py)(dppe)}2](ClO4)2 (VIII). It was concluded that the 2-picolyl groups in these eight complexes are σ-bonded to palladium, and that in the dinuclear complexes I, II, III, IV, and VIII, they serve as bridging ligands.  相似文献   

7.
Using Cu(II/I)/Ni(II) complex fragments and [Bu4N]4[α-Mo8O26] as precursors, four compounds based on α- or β- octamolybdate isomers, [{Cu(tpdoen)}2][α-Mo8O26]·3H2O 1 (tpdoen = 2-(pyridin-2-ylmethoxy)-N-(2-(pyridin-2-ylmethoxy)ethyl)-N-(pyridin-2-ylmethyl)ethanamine); [{Cu(dpoen)}2(α-Mo8O26)] 2 (dpoen = 2-(pyridin-2-ylmethoxy)-N-(pyridin-2-ylmethyl)ethanamine); [{Cu(dpmea)}2(β-Mo8O26)] 3 (dpmea = N,N-diethyl-N-(pyridin-2-ylmethyl)ethanaminium); [{Ni(tpoen)}2(β-Mo8O26)]·5H2O 4 (tpoen = 2-(pyridin-2-ylmethoxy)-N,N-bis(pyridin-2-ylmethyl)ethanamine) were hydrothermally synthesized. They have been characterized by elemental analysis, FT-IR, TG analysis and single-crystal X-ray diffraction. Compound 1 is a discrete structure constructed from [α-Mo8O26]4− anions and [Cu(tpdoen)]2+ coordination cations. The coordination cations aggregate around an octamolybdate anion via hydrogen bonding interactions, forming a “flowerpot” supramolecular network. Compound 2 is constructed from [α-Mo8O26]4− anions bridged through [Cu(dpoen)]2+ fragments into a 2D layered grid. Compounds 3 and 4 are Cu(I) and Cu(II) complexes bis-supported by [β-Mo8O26]4− anions, respectively. The electrochemical behaviors of compounds 14 modified solid bulk-modified carbon paste electrodes (1-MCPE-4-MCPE) have been studied.  相似文献   

8.
The paper describes methods for the synthesis and isolation of solid phases of the individual stereoisomeric Pd(II) bis(amino acid) complexes with serine (SerH = NH2C*H(CH2OH)COOH, α-amino-β-hydroxypropionic acid), threonine (ThrH CH3C*H(OH)C*H(NH2)COOH, threo-α-amino-β-hydroxybutyric acid), and allothreonine (alloThrH is erythro-α-amino-β-hydroxybutyric acid): cis-[Pd(S-Ser)2], trans-[Pd(R-Ser)(S-Ser)], cis-[Pd(S-Thr)2], trans-[Pd(S-Thr)2], trans-[Pd(R-Thr)(S-Thr)], and cis-[Pd(R-alloThr)(S-alloThr)] (R, S are the absolute configurations of the asymmetric C* atom connected to the NH2 group). The synthesized compounds were characterized by elemental analysis, IR and NMR (1H and 13C) data, and X-ray diffraction analysis.  相似文献   

9.
The reaction between Pd(N,N′)Cl2 [N,N′ ≡ 1-alkyl-2-(arylazo)imidazole (N,N′) and picolinic acid (picH) have been studied spectrophotometrically at λ = 463 nm in MeCN at 298 K. The product is [Pd(pic)2] which has been verified by the synthesis of the pure compound from Na2[PdCl4] and picH. The kinetics of the nucleophilic substitution reaction have been studied under pseudo-first-order conditions. The reaction proceeds in a two-step-consecutive manner (A → B → C); each step follows first order kinetics with respect to each complex and picH where the rate equations are: Rate 1 = {k′0 + k′2[picH]0} × [Pd(N,N′)Cl2] and Rate 2 = {k′′0 + k′′2[picH]0}[Pd(N,O)(monodentate N,N′)Cl2] such that the first step second order rate constant (k2) is greater than the second step second order rate constant (k′′2). External addition of Cl (as LiCl) suppresses the rate. Increase in π-acidity of the N,N′ ligand, increases the rate. The reaction has been studied at different temperatures and the activation parameters (ΔH° and ΔS°) were calculated from the Eyring plot.  相似文献   

10.
Two new octahedral Cd(II) complexes [Cd(L)2] (1) and {[Cd(LH)2(SCN)2]H2O} (2) [where LH = C14H13N3O] are synthesized using a tridentate hydrazone ligand (LH) and they are characterized by elemental analysis, IR spectra, NMR spectra, thermal studies and finally the structures have been determined by single crystal X-ray diffraction. Complex 1 crystallizes in monoclinic system, space group C2/c with a = 22.565(6) ?, b = 10.252(3) ?, c = 12.187(4) ?, β = 118.851(2), and Z = 4. Complex 2 also crystallizes in the monoclinic system, space group P21/c with a = 9.257(9)?, b = 17.809(2)?, c = 9.548(9)?, β = 107.439(4), and Z = 2. In 1 the ligand binds the Cd(II) ion in tridentate fashion, whereas in 2 it acts as a bidentate ligand.  相似文献   

11.
Summary.  The reaction products of Co(II)-2,3- and -2,5-dichlorobenzoate with imidazole (1, 2; CoL 2⋯2imdċ2H2O, L=C7H3Cl2O, imd=imidazole) were characterized by their spectroscopic and thermochemical properties. The compounds crystallize in the monoclonic system with space group = P21/c, a=13.848(3), b=12.841(3) ?, c= 7.064(2) ?, β=98.12 °, V=1243.5(4) ?3, Z=2 for 1 and space group =P21/n, a=13.293(3), b= 6.964(2), c=13.800(3) ?, β=108.92(3) °, V=1208.6(4) ?3, Z=2 for 2. The complexes lose their crystal water in one step at 333 K and subsequently decompose to CoO with intermediate formation of Co3O4. Received August 9, 1999. Accepted (revised) February 11, 2000  相似文献   

12.
Nucleophilic substitution of Pd(RaaiR′)Cl2 [RaaiR′=1-alkyl-2-(arylazo)imidazole, p-R—C6H4— N=N—C3H2NN-1-R′; where R= H(a)/Me(b)/Cl(c) and R′ = Et(1)/Bz(2)] with adenine (A) in MeCN–water (1:1) at 298 K, to form [Pd(A)2]Cl2, has been studied spectrophotometrically under pseudo-first-order conditions and the analyses support a nucleophilic association path. The reaction follows the rate law, rate = {a+k [A] 02[Pd(RaaiR′)Cl2]: first-order in Pd(RaaiR′)Cl2 and second-order in A. The rate increases as follows: Pd(RaaiEt)Cl2(1) < Pd(RaaiBz)Cl2(2) and Pd(MeaaiR′)Cl2(b) < Pd(HaaiR′)Cl2(a) < Pd(ClaaiR′)Cl2(c). External addition of Cl (LiCl) suppresses the rate (rate 1/[Cl]). The activation parameters, H0 and S0 of the reactions were calculated from the Eyring plot and support the proposed mechanism.  相似文献   

13.
 The reaction products of Co(II)-2,3- and -2,5-dichlorobenzoate with imidazole (1, 2; CoL 2⋯2imdċ2H2O, L=C7H3Cl2O, imd=imidazole) were characterized by their spectroscopic and thermochemical properties. The compounds crystallize in the monoclonic system with space group = P21/c, a=13.848(3), b=12.841(3) ?, c= 7.064(2) ?, β=98.12 °, V=1243.5(4) ?3, Z=2 for 1 and space group =P21/n, a=13.293(3), b= 6.964(2), c=13.800(3) ?, β=108.92(3) °, V=1208.6(4) ?3, Z=2 for 2. The complexes lose their crystal water in one step at 333 K and subsequently decompose to CoO with intermediate formation of Co3O4.  相似文献   

14.
The ternary complexes [Pd(RaaiX)(SS)ClO4) where RaaiX is a N(1)-alkyl-2-(arylazo)imidazole (p-RC6H4N =NC3H2NN(1) X; X = Me, or Et, and R = H, Me or Cl) and SS = N,N-diethyldithiocarbamate or morpholinedithiocarbamate have been prepared and characterized by elemental analysis, i.r., u.v.-vis. and 1H-n.m.r. data. Electrochemical studies show azo reduction. The complexes are thermally unstable and decompose to bis(dithiocarbamato)palladium(II) in solution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The electronic absorption spectra of palladium(II) diacetate (PDA) complexes with phosphines and sulfides (D) with the composition Pd(OAc)2 · 2D (1: 2) contain an intense charge transfer band at λmax ∼ 300 nm (ɛ ∼ 15 000) and do not absorb in the region of 400 nm. Polynuclear compounds such as PDA trimer [Pd(OAc)2]3, trimer complexes with D, and four- and six-membered palladium metallocyclic compounds formed in the interaction of PDA with mercaptans absorb at longer wavelengths. The electronic absorption spectra of all the palladium polynuclear compounds (clusters) contain bands at λmax ∼ 400 nm (ɛ ∼ 1000). The appearance of these bands in the spectra of palladium clusters is evidence of the formation of chemical bonds between neighboring Pd atoms, although Pd…Pd distances substantially exceed the sum of the covalent radii of palladium atoms.  相似文献   

16.
Four new mixed-ligand complexes of palladium (II) with L1 (N-benwyl-α-amino acid dianion) and L2 [ethyldiamine (en), 2. 2′-bipyridine (Bpy) and 1.10-phenanthroline (Phen)] were synthesized. All the complexes have been characterized by elemental analyses, molar conductance, infrared and1H NMR spectra and thermo-gravimetric analyses. Crystal structures of [Pd(Bpy)(Bzval-N, O)] and [Pd(en)(Bzphe-N, O) ·H2O have been determined by X-ray diffraction analysis. The results indicate that in all the complexes’ ligand L1 coordinates to palladium (II) through deprotonated amide nitrogen and carboxylic oxygen, and there are some intramolecular noncovalent interactions in the complexes. Project supported by the Natural Science Foundation of Zhejiang Province, China.  相似文献   

17.
The reaction of (tmeda)Pd(ClO4)2 (tmeda = N,N,N′,N′-tetramethylethylenediamine) with L (L = bis(4-(4-pyridylcarboxyl)phenyl)methane) affords the ionic cyclodimeric palladium(II) complex [(tmeda)Pd(L)]2(ClO4)4. The complex forms an unprecedented micro-sprout morphology via slow evaporation of acetone in a dilute concentration mixture of acetone and water without any template or additive. In contrast, the palladium(II) complex in a concentrated mixture forms uniform submicrospheres. The formation-process of the micro-sprout morphology has been explained in terms of a stepwise concentration effect. Furthermore, surface modifications and properties of the micro-sprouts via a typical anion exchange or sonication have been studied.  相似文献   

18.
Synthesis, spectroscopic characterization and thermal behavior of pyrazolate-bridged palladium complexes [Pd(μ-Pz)2]n (1), [Pd(μ-mPz)2]n (2), [Pd(μ-dmPz)2]n (3), [Pd(μ-IPz)2]n (4) {pyrazolate (Pz), 4-methylpyrazolate (mPz), 3,5-dimethylpyrazolate (dmPz), 4-iodopyrazolate (IPz)} have been described in this work. The exobidentate coordination mode of pyrazolato ligands in 14 was inferred on basis of IR spectroscopic evidences. TG investigations indicated that the introduction of substituents at the 4 position in the pyrazolyl moiety into coordination polymers do not affect significantly their thermal stability, whereas at the 3 and 5 position reduced the stability of the main chain. Metal palladium was the final product of the thermal decompositions, which was identified by X-ray powder diffraction.  相似文献   

19.
Palladium clusters Pd4(SEt)4(OAc)4(I) and Pd6(SEt)12(II) were synthesized and studied. Their structure was determined by X-ray diffraction analysis. For I, a= 9.774(2) Å, b= 10.821(2) Å, c= 13.061(3) Å, = 92.88(3)°, V= 1379.6(5) Å3, (calcd.) = 2.182 g/cm3, space group P21/n, Z= 4, N ref= 1558, and R= 0.031; for II, a= 10.581(1) Å, b= 10.584(2) Å, c= 11.478(2) Å, = 101.62(1)°, = 104.95(1)°, = 106.74(1)°, V= 1135.2(4) Å3, (calcd) = 2.007 g/cm3, space group P1, Z= 1, N ref= 2828, and R= 0.022. In cluster I, four Pd atoms form a planar cycle. The neighboring palladium atoms are bound by two acetate or by two mercaptide bridges, the Pd···Pd distances being 3.036–3.195 Å. In cluster II, Pd atoms form a planar six-membered cycle with Pd···Pd distances of 3.083–3.127 Å. The neighboring palladium atoms are bound by two mercaptide bridges. The formation of analogous clusters in solution was confirmed by IR spectroscopy.  相似文献   

20.
Aquation of blue cis-trans-cis-[RuCl2(β-NaiR)2] (1) leads to the synthesis of solvento species, blue-violet cis-trans-cis-[Ru(OH2)2(β-NaiR)2](ClO4)2 (2), [β-NaiR = C10H7-N=N-C3H2-NN, abbreviated as N,N′-chelator, R = Me] that have been reacted with NaNO2 in warm EtOH resulting in violet dinitro complexes of the type, [Ru(NO2)2(β-NaiR)2] (3). The nitrite complexes are useful synthons of electrophilic nitrosyls, and on triturating the dinitro compounds with cone. HClO4 nitro-nitrosyl derivatives, [Ru(NO2)(NO)(β-NaiR)2]2+ (4) are isolated. The chemical oxidation of aqua complex (2) by excess aqueous eerie solution in 1 (N) H2SO4 leads to the spontaneous formation of a yellow colored species. The electrophilic behaviour of metal bound nitrosyl has been proved by reacting with a bicyclic ketone, camphor, containing an active methylene group and an arylhydrazone with an active methine group. The diazotization of the primary aromatic amines with a strongly electrophilic mononitrosyl complex in acetonotrile and dichloromethane solution was thoroughly studied. Electrocatalytic oxidation of benzyl alcohol was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号