首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years an increasing number of papers have attempted to mimic or supplant quantum field theory in discussions of issues related to gravity by the tools and through the perspective of quantum information theory, often in the context of alternative quantum theories. In this article, we point out three common problems in such treatments. First, we show that the notion of interactions mediated by an information channel is not, in general, equivalent to the treatment of interactions by quantum field theory. When used to describe gravity, this notion may lead to inconsistencies with general relativity. Second, we point out that in general one cannot replace a quantum field by a classical stochastic field, or mock up the effects of quantum fluctuations by that of classical stochastic sources (noises), because in so doing important quantum features such as coherence and entanglement will be left out. Third, we explain how under specific conditions semi-classical and stochastic theories indeed can be formulated from their quantum origins and play a role at certain regimes of interest.  相似文献   

2.
Familiar quantum mechanics assumes a fixed spacetime geometry. Quantummechanics must therefore be generalized for quantum gravity where spacetime geometry is not fixed but rather a quantum variable. This extended abstract sketches a fully fourdimensional generalized quantum mechnics of cosmological spacetime geometries that is one such generalization.This contribution to the proceedings of the Glafka Conference is an extended abstract of the author's talk there. More details can be found in the references cited at the end of the abstract expecially (Hartle, 1995).  相似文献   

3.
We extend the ideas introduced in the previous work to a more general space-time. In particular we consider the Kantowski-Sachs space time with space section with topology . In this way we want to study a general space time that we think to be the space time inside the horizon of a black hole. In this case the phase space is four dimensional and we simply apply the quantization procedure suggested by loop quantum gravity and based on an alternative to the Schroedinger representation introduced by H. Halvorson. Through this quantization procedure we show that the inverse of the volume density and the Schwarzschild curvature invariant are upper bounded and so the space time is singularity free. Also in this case we can extend dynamically the space time beyond the classical singularity. PACS number: 04.60.Pp, 04.70.Dy  相似文献   

4.
5.
An excruciating issue that arises in mathematical, theoretical and astro-physics concerns the possibility of regularizing classical singular black hole solutions of general relativity by means of quantum theory. The problem is posed here in the context of a manifestly covariant approach to quantum gravity. Provided a non-vanishing quantum cosmological constant is present, here it is proved how a regular background space-time metric tensor can be obtained starting from a singular one. This is obtained by constructing suitable scale-transformed and conformal solutions for the metric tensor in which the conformal scale form factor is determined uniquely by the quantum Hamilton equations underlying the quantum gravitational field dynamics.  相似文献   

6.
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton‘s theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein‘s general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.  相似文献   

7.
Based on the generalized uncertainty principle (GUP), we investigate the correction of quantum gravity to Hawking radiation of black hole by utilizing the tunnelling method. The result tells us that the quantum gravity correction retards the evaporation of black hole. Using the corrected covariant Dirac equation in curved spacetime, we study the tunnelling process of fermions in Schwarzschild spacetime and obtain the corrected Hawking temperature. It turns out that the correction depends not only on the mass of black hole but also on the mass of emitted fermions. In our calculation, the quantum gravity correction slows down the increase of Hawking temperature during the radiation explicitly. This correction leads to the remnants of black hole and avoids the evaporation singularity.  相似文献   

8.
WU Ning 《理论物理通讯》2002,38(2):151-156
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussed in this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum, it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantum theory.  相似文献   

9.
WU Ning 《理论物理通讯》2006,45(3):452-456
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments.And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.  相似文献   

10.
We describe a kinetic theory approach to quantum gravity by which we mean a theory of the microscopic structure of space-time, not a theory obtained by quantizing general relativity. A figurative conception of this program is like building a ladder with two knotty poles: quantum matter field on the right and space-time on the left. Each rung connecting the corresponding knots represents a distinct level of structure. The lowest rung is hydrodynamics and general relativity; the next rung is semiclassical gravity, with the expectation value of quantum fields acting as source in the semiclassical Einstein equation. We recall how ideas from the statistical mechanics of interacting quantum fields helped us identify the existence of noise in the matter field and its effect on metric fluctuations, leading to the establishment of the third rung: stochastic gravity, described by the Einstein–Langevin equation. Our pathway from stochastic to quantum gravity is via the correlation hierarchy of noise and induced metric fluctuations. Three essential tasks beckon: (1) deduce the correlations of metric fluctuations from correlation noise in the matter field; (2) reconstituting quantum coherence—this is the reverse of decoherence—from these correlation functions; and (3) use the Boltzmann–Langevin equations to identify distinct collective variables depicting recognizable metastable structures in the kinetic and hydrodynamic regimes of quantum matter fields and how they demand of their corresponding space-time counterparts. This will give us a hierarchy of generalized stochastic equations—call them the Boltzmann–Einstein hierarchy of quantum gravity—for each level of space-time structure, from the the macroscopic (general relativity) through the mesoscopic (stochastic gravity) to the microscopic (quantum gravity).  相似文献   

11.
The most general quantum mechanical wave equation for a massive scalar particle in a metric generated by a spherically symmetric mass distribution is considered within the framework of higher derivative gravity (HDG). The exact effective Hamiltonian is constructed and the significance of the various terms is discussed using the linearized version of the above-mentioned theory. Not only does this analysis shed new light on the long standing problem of quantum gravity concerning the exact nature of the coupling between a massive scalar field and the background geometry, it also greatly improves our understanding of the role of HDG's coupling parameters in semiclassical calculations.  相似文献   

12.
The quantum fluctuations of the stress tensor of a quantum field are discussed, as are the resulting space-time metric fluctuations. Passive quantum gravity is an approximation in which gravity is not directly quantized, but fluctuations of the space-time geometry are driven by stress tensor fluctuations. We discuss a decomposition of the stress tensor correlation function into three parts, and consider the physical implications of each part. The operational significance of metric fluctuations and the possible limits of validity of semiclassical gravity are discussed.  相似文献   

13.
Despite their diversity, many of the most prominent candidate theories of quantum gravity share the property to be effectively lower-dimensional at small scales. In particular, dimension two plays a fundamental role in the finiteness of these models of Nature. Thus motivated, we entertain the idea that spacetime is a multifractal with integer dimension 4 at large scales, while it is two-dimensional in the ultraviolet. Consequences for particle physics, gravity and cosmology are discussed.  相似文献   

14.
As shown previously, quantum mechanics directly violates the weak equivalence principle in general, and thus indirectly violates the strong equivalence principle in all dimensions. The present paper shows that quantum mechanics also directly violates the strong equivalence principle unless it is arbitrarily abetted in hindsight. Vital domains are shown to exist in which quantum gravity would be non-applicable. There are classical subtleties in which the strong equivalence principle appears to be violated, but is not. Neutron free fall interference experiments in a gravitational field are examined, as is Galileo's falling body assertion and the misconception it leads to.  相似文献   

15.
We construct black hole solutions to Einstein-Born-Infeld gravity with a cosmological constant. Since an elliptic function appears in the solutions for the metric, we construct horizons numerically. The causal structure of these solutions differs drastically from their counterparts in Einstein-Maxwell gravity with a cosmological constant. The charged de-Sitter black holes can have up to three horizons and the charged anti-de Sitter black hole can have one or two depending on the parameters chosen.  相似文献   

16.
Considering our expanding universe as made up of gravitationally interacting particles which describe particles of luminous matter, dark matter and dark energy which is represented by a repulsive harmonic potential among the points in the flat 3-space and incorporating Mach’s principle into our theory, we derive a quantum mechanical relation connecting, temperature of the cosmic microwave background radiation, age, and cosmological constant of the universe. When the cosmological constant is zero, we get back Gamow’s relation with a much better coefficient. Otherwise, our theory predicts a value of the cosmological constant 2.0×10−56 cm−2 when the present values of cosmic microwave background temperature of 2.728 K and age of the universe 14 billion years are taken as input.  相似文献   

17.
The analysis of the measurement of gravitational fields leads to the Rosenfeld inequalities. They say that, as an implication of the equivalence of the inertial and passive gravitational masses of the test body, the metric cannot be attributed to an operator that is defined in the frame of a local canonical quantum field theory. This is true for any theory containing a metric, independently of the geometric framework under consideration and the way one introduces the metric in it. Thus, to establish a local quantum field theory of gravity one has to transit to non-Riemann geometry that contains (beside or instead of the metric) other geometric quantities. From this view, we discuss a Riemann–Cartan and an affine model of gravity and show them to be promising candidates of a theory of canonical quantum gravity.  相似文献   

18.
A synopsis-cum-update of work in the past half-decade or so on applying the algebraico-categorical concepts, technology and general philosophy of Abstract Differential Geometry (ADG) to various issues in current classical and quantum gravity research is presented. The exposition is mainly discursive, with conceptual, interpretational and philosophical matters emphasized throughout, while their formal technical-mathematical underpinnings have been left to the original papers. The general position is assumed that Quantum Gravity is in need of a new mathematical, novel physical concepts and principles introducing, framework in which old and current problems can be reformulated, readdressed and potentially retackled afresh. It is suggested that ADG can qualify as such a theoretical framework.Paper version of a talk given at the Glafka–2004: Iconoclastic Approaches to Quantum Gravity international theoretical physics conference, held in Athens, Greece (summer 2004).  相似文献   

19.
Based on geometry picture of gravitational gauge theory, the cosmological constant is determined theoreti-cally. The cosmological constant is related to the average energy density of gravitational gauge field. Because the energydensity of gravitational gauge field is negative, the cosmological constant is positive, which generates repulsive force onstars to make the expansion rate of the Universe accelerated. A rough estimation of it gives out its magnitude of theorder of about 10-52m-2, which is well consistent with experimental results.  相似文献   

20.
We discuss the stability of semiclassical gravity solutions with respect to small quantum corrections by considering the quantum fluctuations of the metric perturbations around the semiclassical solution. We call the attention to the role played by the symmetrized 2-point quantum correlation function for the metric perturbations, which can be naturally decomposed into two separate contributions: intrinsic and induced fluctuations. We show that traditional criteria on the stability of semiclassical gravity are incomplete because these criteria based on the linearized semiclassical Einstein equation can only provide information on the expectation value and the intrinsic fluctuations of the metric perturbations. By contrast, the framework of stochastic semiclassical gravity provides a more complete and accurate criterion because it contains information on the induced fluctuations as well. The Einstein–Langevin equation therein contains a stochastic source characterized by the noise kernel (the symmetrized 2-point quantum correlation function of the stress tensor operator) and yields stochastic correlation functions for the metric perturbations which agree, to leading order in the large N limit, with the quantum correlation functions of the theory of gravity interacting with N matter fields. These points are illustrated with the example of Minkowski space-time as a solution to the semiclassical Einstein equation, which is found to be stable under both intrinsic and induced fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号