首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
This paper deals with the analytical property of the first Melnikov function for general Hamiltonian systems possessing a cuspidal loop of order 2 and its expansion at the Hamiltonian value corresponding to the loop. The explicit formulas for the first coefficients of the expansion have been given. We prove that at least 13 limit cycles can bifurcate from the cuspidal loop of order 2 under certain conditions. Then we consider the cyclicity of a cuspidal loop in some Liénard and Hamiltonian systems, and determine the number of limit cycles that can bifurcate from the perturbed system.  相似文献   

2.
As we know, the Liénard system and its generalized forms are classical and important models of nonlinear oscillators, and have been widely studied by mathematicians and scientists. The main problem considered by most people is the number of limit cycles. In this paper, we investigate two kinds of Liénard systems and obtain the maximal number (i.e. the least upper bound) of limit cycles appearing in Hopf bifurcations by applying some known bifurcation theorems with technical analysis.  相似文献   

3.
In this paper, we study the distribution and simultaneous bifurcation of limit cycles bifurcated from the two periodic annuli of the holomorphic differential equation , after a small polynomial perturbation. We first show that, under small perturbations of the form , where is a polynomial of degree 2m−1 in which the power of z is odd and the power of is even, the only possible distribution of limit cycles is (u,u) for all values of u=0,1,2,…,m−3. Hence, the sharp upper bound for the number of limit cycles bifurcated from each two period annuli of is m−3, for m≥4. Then we consider a perturbation of the form , where is a polynomial of degree m in which the power of z is odd and obtain the upper bound m−5, for m≥6. Moreover, we show that the distribution (u,v) of limit cycles is possible for 0≤um−5, 0≤vm−5 with u+vm−2 and m≥9.  相似文献   

4.
For real planar polynomial differential systems there appeared a simple version of the 16th Hilbert problem on algebraic limit cycles: Is there an upper bound on the number of algebraic limit cycles of all polynomial vector fields of degree m? In [J. Llibre, R. Ramírez, N. Sadovskaia, On the 16th Hilbert problem for algebraic limit cycles, J. Differential Equations 248 (2010) 1401-1409] Llibre, Ramírez and Sadovskaia solved the problem, providing an exact upper bound, in the case of invariant algebraic curves generic for the vector fields, and they posed the following conjecture: Is1+(m−1)(m−2)/2the maximal number of algebraic limit cycles that a polynomial vector field of degree m can have?In this paper we will prove this conjecture for planar polynomial vector fields having only nodal invariant algebraic curves. This result includes the Llibre et al.?s as a special one. For the polynomial vector fields having only non-dicritical invariant algebraic curves we answer the simple version of the 16th Hilbert problem.  相似文献   

5.
The generalized homoclinic loop appears in the study of dynamics on piecewise smooth differential systems during the past two decades. For planar piecewise smooth differential systems, there are concrete examples showing that under suitable perturbations of a generalized homoclinic loop one or two limit cycles can appear. But up to now there is no a general theory to study the cyclicity of a generalized homoclinic loop, that is, the maximal number of limit cycles which are bifurcated from it.  相似文献   

6.
The generic isolated bifurcations for one-parameter families of smooth planar vector fields {Xμ} which give rise to periodic orbits are: the Andronov-Hopf bifurcation, the bifurcation from a semi-stable periodic orbit, the saddle-node loop bifurcation and the saddle loop bifurcation. In this paper we obtain the dominant term of the asymptotic behaviour of the period of the limit cycles appearing in each of these bifurcations in terms of μ when we are near the bifurcation. The method used to study the first two bifurcations is also used to solve the same problem in another two situations: a generalization of the Andronov-Hopf bifurcation to vector fields starting with a special monodromic jet; and the Hopf bifurcation at infinity for families of polynomial vector fields.  相似文献   

7.
In this paper, we study limit cycle bifurcations for a kind of non-smooth polynomial differential systems by perturbing a piecewise linear Hamiltonian system with the center at the origin and a homoclinic loop around the origin. By using the first Melnikov function of piecewise near-Hamiltonian systems, we give lower bounds of the maximal number of limit cycles in Hopf and homoclinic bifurcations, and derive an upper bound of the number of limit cycles that bifurcate from the periodic annulus between the center and the homoclinic loop up to the first order in εε. In the case when the degree of perturbing terms is low, we obtain a precise result on the number of zeros of the first Melnikov function.  相似文献   

8.
This work deals with limit cycles of real planar analytic vector fields. It is well known that given any limit cycle Γ of an analytic vector field it always exists a real analytic function f0(x,y), defined in a neighborhood of Γ, and such that Γ is contained in its zero level set. In this work we introduce the notion of f0(x,y) being an m-solution, which is a merely analytic concept. Our main result is that a limit cycle Γ is of multiplicity m if and only if f0(x,y) is an m-solution of the vector field. We apply it to study in some examples the stability and the bifurcation of periodic orbits from some non-hyperbolic limit cycles.  相似文献   

9.
10.
11.
12.
This paper is concerned with obtaining the conditions under which the origin is an isochronous centre for certain planar polynomial systems. The necessity of these conditions is proved using a computer implementation of an algorithm first proposed by I.I. Pleshkan. Their sufficiency is then proved using various methods.  相似文献   

13.
This paper deals with impulsive second order differential equations with deviating arguments. We investigate the existence of solutions of such problems with nonlinear boundary conditions. To obtain corresponding results we discuss also second order impulsive differential inequalities with deviating arguments.  相似文献   

14.
As we know, for non-smooth planar systems there are foci of three different types, called focus-focus (FF), focus-parabolic (FP) and parabolic-parabolic (PP) type respectively. The Poincaré map with its analytical property and the problem of Hopf bifurcation have been studied in Coll et al. (2001) [3] and Filippov (1988) [6] for general systems and in Zou et al. (2006) [13] for piecewise linear systems. In this paper we also study the problem of Hopf bifurcation for non-smooth planar systems, obtaining new results. More precisely, we prove that one or two limit cycles can be produced from an elementary focus of the least order (order 1 for foci of FF or FP type and order 2 for foci of PP type) (Theorem 2.3), different from the case of smooth systems. For piecewise linear systems we prove that 2 limit cycles can appear near a focus of either FF, FP or PP type (Theorem 3.3).  相似文献   

15.
We show that every finite configuration of disjoint simple closed curves in the plane is topologically realizable as the set of limit cycles of a polynomial Liénard equation. The related vector field X is Morse–Smale. Moreover it has the minimum number of singularities required for realizing the configuration in a Liénard equation. We provide an explicit upper bound on the degree of X, which is lower than the results obtained before, obtained in the context of general polynomial vector fields.  相似文献   

16.
First we provide new properties about the vanishing multiplicity of the inverse integrating factor of a planar analytic differential system at a focus. After we use this vanishing multiplicity for studying the cyclicity of foci with pure imaginary eigenvalues and with homogeneous nonlinearities of arbitrary degree having either its radial or angular speed independent of the angle variable in polar coordinates. After we study the cyclicity of a class of nilpotent foci in their analytic normal form.  相似文献   

17.
The slow divergence integral is a crucial tool to study the cyclicity of a slow–fast cycle for singularly perturbed planar vector fields. In this paper, we deduce a useful form for this integral in order to apply it to various problems. As an example, we use it to prove that the slow divergence integral along any non-degenerate slow–fast cycle for singular perturbations of classical Liénard equations of degree 5 has at most one zero, and the zero is simple if it exists; hence the cyclicity of any non-degenerate slow–fast cycle in this class of equations is at most 2. Up to now there were many interesting results about Liénard equations of degree 3, 4 and ≥6, but almost nothing is known about degree 5. The result in this paper can be seen as a first stage to study the uniform property for classical Liénard equations of degree 5.  相似文献   

18.
Denote by QH and QR the Hamiltonian class and reversible class of quadratic integrable systems. There are several topological types for systems belong to QHQR. One of them is the case that the corresponding system has two heteroclinic loops, sharing one saddle-connection, which is a line segment, and the other part of the loops is an ellipse. In this paper we prove that the maximal number of limit cycles, which bifurcate from the loops with respect to quadratic perturbations in a conic neighborhood of the direction transversal to reversible systems (called in reversible direction), is two. We also give the corresponding bifurcation diagram.  相似文献   

19.
In this paper four-parameter unfoldings Xλ of symmetric elliptic Hamiltonians of degree four are studied. We prove that in a compact region of the period annulus of X0 the displacement function of Xλ is sign equivalent to its principal part, which is given by a family induced by a Chebychev system; and we describe the bifurcation diagram of Xλ in a full neighborhood of the origin in the parameter space, where at most two limit cycles can exist for the corresponding systems.  相似文献   

20.
In this paper we complete the global qualitative analysis of a quartic ecological model. In particular, studying global bifurcations of singular points and limit cycles, we prove that the corresponding dynamical system has at most two limit cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号