首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work is probably the first attempt to identify the organic colouring materials contained in post-Byzantine textiles, from the Holy Mountain of Athos. Samples extracted from seven ecclesiastical garments (15th–19th century) are investigated by high performance liquid chromatography with UV-Vis diode array detection. The detection limits for alizarin, purpurin, carminic acid, laccaic acid A, luteolin, apigenin, genistein, fisetin, sulfuretin, ellagic acid, indigotin and indirubin are found to be within 0.002–0.029 μg mL−1. The following organic dyes are identified in the extracts: dyer’s broom (Genista tinctoria L.), young fustic (Cotinus coggygria Scop.), an indigoid dye source either indigo (Indigofera species) or woad (Isatis tinctoria L.), madder, cochineal and lac dye (Kerria lacca Kerr). Furthermore, the identification of a brazilein derivative indicates the presence of a Caesalpinia dye source in the samples. Correspondence: Ioannis Karapanagiotis, Ormylia Art Diagnosis Center, Sacred Convent of the Annunciation, Ormylia, GR-63071 Chalkidiki, Greece  相似文献   

2.
In this work, the lightfastness of wool textile samples, dyed with madder and its principal components alizarin and purpurin, was investigated using two complementary experimental techniques: absorption and emission UV-vis spectroscopy and chromatography (HPLC-PDA). Spectroscopic techniques were used to follow the time course of ageing, whereas chromatography was applied to determine relative compositional changes that occurred after exposure of wool dyed samples to natural and artificial ageing. The results from the two techniques integrate well each other and provide complementary and useful indications about the sensitivity of the dyed textiles to ageing, showing that purpurin is the principal component responsible for the spectral and chromatic properties of madder as well as for its degradation. The fading of both the fibre and dye is reduced in the presence of alum and in the absence of oxygen. The multi-analytical approach used highlights the potential of the UV-vis spectroscopy for the investigation of dyes on textiles. The great sensitivity of the spectrofluorimetry makes this technique particularly promising for a non-destructive study of dyes on works of art.  相似文献   

3.
Indigo carmine is a commonly used industrial blue dye. To determine its concentration in a commercially available food dye composed of a mixture of indigo carmine and D-glucose, this paper characterizes it through (ATR, KBr) FTIR micro-Raman as well as UV/Vis and clock: Briggs–Rauscher (BR) oscillatory reaction methods. The indigo carmine was detected in the bulk food dye only by applying micro-Raman spectroscopy, indicating a low percentage of the indigo carmine present. This research provides an improvement in the deviations from the experimental Raman spectrum as calculated by the B97D/cc-pVTZ level of theory one, resulting in a better geometrical optimization of the indigo carmine molecule compared to data within the literature. The analytical curves used to determine indigo carmine concentrations (and quantities) in an aqueous solution of food dye were applied by means of UV/Vis and BR methods. BR yielded significantly better analytical parameters: 100 times lower LOD and LOQ compared to commonly used UV/Vis. The remarkable sensitivity of the BR reaction towards indigo carmine suggests that not only does indigo carmine react in an oscillatory reaction but also its decomposition products, meaning that the multiple oxidation reactions have an important role in the BR’s indigo carmine mechanism. The novelty of this research is the investigation of indigo carmine using a clock BR reaction, opening new possibilities to determine indigo carmine in other complex samples (pharmaceutical, food, etc.).  相似文献   

4.
A quaternary mixture of carminic acid, riboflavine, curcumin and erythrosine can be resolved with a previous extraction step into metyl-isobutyl ketone and, resolving the binary mixtures obtained in the aqueous phase and organic phase, using derivative spectrophotometry on the basis of the zero-crossing measurements in the first derivative spectra as well as the first derivative of ratio spectra. The conditions of extraction established and the proposed methods have been tested to determine these colorants in several synthetic mixtures of four dyes, obtaining good recoveries. The methods have been applied in yoghurt samples spiked with the dyes.  相似文献   

5.
The α-octamolybdate-supported compound: [Fe(2,2′-bipy)3]2[α-Mo8O26] has been unexpectedly synthesized during a diffuse process and characterized by the IR spectroscopy, UV–Vis diffuse reflectance spectroscopy and the single crystal X-ray diffraction. The title compound exhibits an interesting 3D honeycomb ‘host’ supramolecular network with 1D channels, in which only α-octamolybdate anions ‘guests’ reside. The title compound shows the anisotropic property and probably will be applied as a novel semiconductor in the future.  相似文献   

6.
The red shades of 13 icons (15th-17th century) of the Cretan School of iconography are investigated in detail to identify the inorganic and organic colouring materials comprising the paint layers. Examination of sample cross-sections is performed with optical microscopy. Micro-Raman spectroscopy and high performance liquid chromatography (HPLC) coupled to a photodiode array detector are employed for the identification of the inorganic and organic colouring materials, respectively. The results reveal the extensive use of coccid dyes by the Cretan painters: kermes (Kermes vermilio Planchon) is found in icons dated before the middle 16th century and cochineal in icons created several decades after the discovery of the New World. Other dyestuffs detected in the historical samples are madder (possibly Rubia tinctorum L., according to HPLC profiles), soluble redwood and indigoid dyes. Organic dyes were used by the painters as exclusive colouring matters (or glazes) or in mixtures with inorganic pigments, such as red ochre, cinnabar, minium, azurite lead white and carbon black.Liquid chromatography with mass spectrometry (LC-MS) coupled to a negative electrospray ionization mode is employed to provide information on the identity of some unknown colouring components, of the aforementioned dyes, detected in the historical samples. The results suggest that (i) the type B compound (also known as Bra′) is a dehydro-brazilein product and (ii) the deprotonated molecular ion of the type C compound corresponds to m/z = 243. Both compounds are commonly used as markers for the identification of soluble redwood in historical samples. LC-MS analysis of cochineal shows that the dcIV and dcVII components are isomeric with carminic acid, as it has been recently suggested. Finally, LC-MS is employed to identify and record kermesic and flavokermesic acid in kermes and rubiadin in wild madder.  相似文献   

7.
Samples of four natural dyes from different organic families—natural madder (anthraquinonoid), curcuma (curcuminoid), saffron (carotenoid) and indigo (indigotic)—were analysed using a new procedure based on pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS), which includes the on-line derivatisation of the natural dyes using hexamethyldisilazane (HMDS). In addition, a previous procedure involving the addition of a 10% H2SO4 aqueous solution to the dye and further separation with ethyl acetate has been tested. This procedure enhances the sensitivity of the method by extracting the colouring compounds from the rest of the compounds present in the natural dye. Two possible derivatising reagents—HMDS and tetramethylammonium hydroxide (TMAH)—were compared in order to assess their effectiveness in the proposed method. Characteristic peaks from trimethylsilyl derivatives of alizarin, quinizarin, xanthopurpurin and purpurin were obtained for madder; peaks from safranal, isophorone and trimethylsilyl derivative of crocetin for saffron; peaks from 4-(4-hydroxy-3-methoxy)phenyl-3-buten-2-one and 4-(4-hydroxy-3-methoxy)phenyl-2-butanone, which are primary pyrolysis products of curcuma, and peaks from indole, 2-methylindole and 2,3-dihydroindol-2-one, which are primary pyrolysis products of indigo, among others, were obtained. The reported procedure leads to the unambiguous identification of the four studied dyes from solid samples formed by individual dyes.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

8.
PbMoO4 molybdate with scheelite structure was synthesized by a simple co-precipitation method. The material was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), and adsorption?Cdesorption N2 isotherms (BET). The photocatalytic activity of PbMoO4 molybdate was evaluated with the degradation reactions of rhodamine B (rhB), indigo carmine (IC), orange G (OG), and methyl orange (MO) under UV irradiation. In order to elucidate aspects of the degradation mechanism of the organic dyes, some experimental variables were modified such as pH and O2 level in solution. The total organic carbon (TOC) analysis of samples irradiated revealed that mineralization of organic dyes by the action of PbMoO4 was feasible in rhB (60%), IC (80%), and OG (65%) after 96?h of irradiation. For the same time of irradiation, a recalcitrant behavior to the mineralization was observed in MO reaching only a 10% of mineralization degree.  相似文献   

9.
The photocatalytic activity of silver-deposited ZnO in the photodegradation of methyl orange (MO) was investigated. The as-prepared photocatalysts were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The results showed that the silver-deposited ZnO had a visible light plasmon absorption band. The photocatalytic degradation experiment revealed that the catalytic efficiency of the Ag–ZnO composite in the degradation of MO was greater than that of pure ZnO samples. This study shows that the degradation process is dominated by the Ag–ZnO photocatalytic system, complying with a pseudo-first-order rate law. Under the experimental conditions, approximately 65.0% dye removal was achieved within 100 min.  相似文献   

10.
A multi-technique approach was employed to study a decorated Egyptian wooden sarcophagus (XXV–XXVI dynasty, Third Intermediate Period), belonging to the Museo del Vicino Oriente of the Sapienza University of Rome. Portable non-invasive unilateral NMR was applied to evaluate the conservation state of the sarcophagus. Moreover, using unilateral NMR, a non-invasive analytical protocol was established to detect the presence of organic substances on the surface and/or embedded in the wooden matrix. This protocol allowed for an educated sampling campaign aimed at further investigating the state of degradation of the wood and the presence of organic substances by 13C cross polarization magic angle spinning (CPMAS) NMR spectroscopy. The composition of the painted layer was analysed by optical microscopy (OM), scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS), Raman and surface enhanced (resonance) Raman spectroscopy (SERS/SERRS), infrared and GC–MS techniques, evidencing original components such as clay minerals, Egyptian green, indigo, natural gums, and also highlighting restoration pigments and alteration compounds. The identification of the wood, of great value for the reconstruction of the history of the artwork, was achieved by means of optical microscopy.  相似文献   

11.
Water pollution due to industrial effluents from industries which utilize dyes in the manufacturing of their products has serious implications on aquatic lives and the general environment. Thus, there is need for the removal of dyes from wastewater before being discharged into the environment. In this study, a nanocomposite consisting of silver, silver oxide (Ag2O), zinc oxide (ZnO) and graphene oxide (GO) was synthesized, characterized and photocatalytically applied in the degradation (and possibly mineralization) of organic pollutants in water treatment process. The Ag–Ag2O–ZnO nanostructure was synthesized by a co-precipitation method and calcined at 400 °C. It was functionalized using 3-aminopropyl triethoxysilane and further anchored on carboxylated graphene oxide via the formation of an amide bond to give the Ag–Ag2O–ZnO/GO nanocomposite. The prepared nanocomposite was characterized by UV–Vis diffuse reflectance spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), energy dispersive X-ray spectrometry (EDX), Fourier transformed infrared spectroscopy (FTIR), and Raman spectroscopy. The applicability of Ag–Ag2O–ZnO/GO nanocomposite as a photocatalyst was investigated in the photocatalytic degradation of acid blue 74 dye under visible light irradiation in synthetic wastewater containing the dye. The results indicated that Ag–Ag2O–ZnO/GO nanocomposite has a higher photocatalytic activity (90% removal) compared to Ag–Ag2O–ZnO (85% removal) and ZnO (75% removal) respectively and thus lends itself to application in water treatment, where the removal of organics is very important.  相似文献   

12.
Titanium (IV) oxide semiconducting layers were prepared by means of the templated sol–gel method and deposited on conductive ITO substrates. The films were described by a series of techniques involving X-ray diffraction (XRD), Raman spectroscopy, X-ray reflectivity (XRR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and ultraviolet–visible spectroscopy (UV–Vis). The photo-excitation properties of the films were characterized by electrochemical tests and evaluated from the obtained polarization curves. The generated photocurrents were measured in the presence of the hole-scavengers—oxalic acid and formic acid in the electrolyte. It was shown that especially in the case of oxalic acid the developed system can be used as an efficient and simpler concentration sensor. The relationship between values of the generated photocurrent and the layers’ thicknesses was also investigated.  相似文献   

13.
14.
The photocatalytic degradation of azo dyes with different structures (amaranth, sunset yellow and tartrazine) using TiO2-Pt nanoparticles (TPt), TiO2-Pt/graphene oxide (TPt-GO) and TiO2-Pt/reduced graphene oxide (TPt-rGO) composites were investigated in the presence of UV and natural sunlight irradiation. The composites were prepared by a combined chemical-thermal method and characterized by Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Infrared (FTIR) and UV–Vis spectroscopy. The modification of TiO2-Pt with graphene oxide shifted its optical absorption edge towards the visible region and increased its photocatalytic activity under UV and natural sunlight irradiation. The efficiency of catalysts on azo dyes degradation (in similar conditions) reached high values (above 99%) under sunlight conditions, proving the remarkable photocatalytic activities of obtained composites. TPt-GO nanocomposite exhibited higher photoactivity than TPt or TPt-rGO, demonstrating degradation efficiencies of 99.56% for amaranth, 99.15% for sunset yellow and 96.23% for tartrazine. The dye photodegradation process follows a pseudo-first-order kinetic with respect to the Langmuir-Hinshelwood reaction mechanism. A direct dependence between azo dyes degradation rate and chemical structure of dyes has been observed.  相似文献   

15.
A dioxomolybdenum(VI) complex has been covalently anchored onto mesoporous titania by a silicon-assisted transesterification route. The grafting of the complex to the mesoporous structure was confirmed by diffuse reflectance infrared Fourier transform, Raman and UV–Vis spectroscopy and by nitrogen sorption experiments. The ability of the grafted complex to activate molecular oxygen (O2) has been evaluated in the photooxidation of diphenylmethane to produce benzophenone. The photooxidation of diphenylmethane was monitored continuously by in situ dispersive Raman spectroscopy. A scheme for the activation of molecular oxygen under very mild conditions is proposed. A comparison with the same complex anchored onto commercial titanium P-25 and silica gel revealed both the beneficial effect of the mesoporous structure and the existence of a synergistic effect between MoO/TiO2/O2/light entities, which promotes the photooxidation process under green chemistry conditions. Finally, the heterogeneous catalyst is sustainable; it can be recycled and reused without significant loss in activity or selectivity.  相似文献   

16.
Maya Blue, a pigment composed of very low concentrations of natural indigo and the clay mineral palygorskite, is one of the most brilliant blue dyes, intensively used for more than 2000 years in Mesoamerica. It is extremely stable against environmental attacks and was applied by the Indians for inside and outside mural paintings, ceramics, textiles and for colouring their famous codices. In the present paper it was studied as a powder (compared with modern synthetic indigo) and as colour on tissues, a Maya clay head, and fragment IV of the famous Codex Huamantla. Investigations using Raman spectroscopy in the visible and near-infrared range showed a high degree of correspondence among all Maya Blue-carrying samples and a good agreement with synthetic indigo. Additional spectral lines may be explained by a transformation of the planar indigo molecule when binding to the palygorskite lattice. Thermal investigations of the original “amatl” paper of the codex and of recent paper from fig-trees showed a high similarity and thus proved that this tree was chosen for paper making by Mayas, Aztecs and other Indian tribes. This was also true for the codex.  相似文献   

17.
The surface enhanced resonance Raman spectra of three modified carboxy-x-rhodamine dyes were recorded using Au nanoparticles and an excitation laser operating at 670 nm. The dyes were modified with a linker group designed both to increase the surface enhanced Raman spectroscopy signal and to couple the dye to the Au nanoparticles surface. The maximum signal intensity was recorded for a Cys-Gly linker with Cys thiol group acting as the coupling point to the Au surface and Gly-NH2 group used to attach the carboxy-x-rhodamine dye. This gave a signal intensity in the 1503 cm−1 Raman peak that was more than 20 times greater than for the unmodified dye. The Au nanoparticles used had a diameter of 49.8 ± 1.2 nm and were synthesised by the citrate reduction method.  相似文献   

18.
A series of tungsten‐doped Titania photocatalysts were synthesized using a low‐temperature method. The effects of dopant concentration and annealing temperature on the phase transitions, crystallinity, electronic, optical, and photocatalytic properties of the resulting material were studied. The X‐ray patterns revealed that the doping delays the transition of anatase to rutile to a high temperature. A new phase WyTi1‐yO2 appeared for 5.00 wt% W‐TiO2 annealed at 900 °C. Raman and diffuse reflectance UV–Vis spectroscopy showed that band gap values decreased slightly up to 700 °C. X‐ray photoelectron spectroscopy showed that surface species viz. Ti3+, Ti4+, O2?, oxygen‐vacancies, and adsorbed OH groups vary depending on the preparation conditions. The photocatalytic activity was evaluated via the degradation of methylene blue using LED white light. The degradation rate was affected by the percentage of dopants. The best photocatalytic activity was achieved with the sample labeled 5.00 wt% W‐TiO2 annealed at 700 °C.  相似文献   

19.
The study is devoted to the characterization by both TG-DTG analysis and FTIR spectroscopy of beech flour, dyes and the sorbent-dyes products obtained through retention of the dyes from aqueous solution on the beech flour, to the aim of obtaining information on the nature of dyes’ retention, thermal behavior of the sorbent-dye materials as well as on their possible upgrading as fuel. Thermal analysis led to the conclusion that the mechanism of thermo-oxidative degradation is specific and the retention of dyes occurs on cellulose from beech flour. The nature of the bonds involved in dyes’ retention is also investigated by FTIR analysis, which evidences that dyes retention on cellulose is realized through hydrogen bonding between the NH and, respectively, OH groups from dye molecule and the oxygen atoms from cellulose. Involvement of the non-participating electrons of the nitrogen and, respectively, oxygen atoms of these groups in the extended electronic conjugation with aromatic nuclei strongly influences the capacity of the amino and, respectively, hydroxyl groups of forming hydrogen bonds, thus achieving dyes fixation on the sorbent. DTA analysis led to the conclusion that an improvement in the quality of the sorbent-dye materials as fuels is possible, as compared to untreated beach flour, as a result of the modification of the cellulosic fibers in the process of dyes retention.  相似文献   

20.
Organic colorants contained in 30 textiles (16th to early 20th century) from the monastery of Simonos Petra (Mount Athos) have been investigated using high-performance liquid chromatography equipped with diode-array detection and mass spectrometry (HPLC–DAD–MS). The components of natural dyes identified in samples treated by the standard HCl dyestuff extraction method were: alizarin, apigenin, butein, carminic acid, chrysoeriol, dcII, dcIV, dcVII, ellagic acid, emodin, fisetin, flavokermesic acid, fustin, genistein, haematein derivative (Hae′), indigotin, indirubin, isoliquiritigenin, isorhamnetin, kaempferide, kaempferol, kermesic acid, luteolin, naringenin, purpurin, quercetin, rhamnazin, rhamnetin, sulfuretin, and type B and type C compounds (last two are markers for Caesalpinia trees). Early, semi-synthetic dyes, for example indigo carmine, fuchsin components, and rhodamine B were identified in objects dated late 19th to early 20th century. A dyestuff extraction method which involves use of TFA, instead of HCl, was applied to selected historical samples, showing that the mild method enables efficient extraction of weld (Reseda luteola L.) and dyer’s broom (Genista tinctoria L.) glycosides. The marker compound (Hae′) for logwood (Haematoxylum campechianum L.) identification after treatment with HCl was investigated by liquid chromatography coupled to mass spectrometry (LC–MS) in negative electrospray ionization (LC–MS-ESI) mode. LC–MS in negative atmospheric pressure chemical ionization (LC–MS-APCI) mode was used, probably for the first time, to investigate cochineal (Dactylopius coccus Costa) samples. Positive electrospray ionization (LC–MS-ESI+) mode was used for identification of fuchsin components. Detailed HPLC–DAD studies were performed on young fustic (Cotinus coggygria Scop.) and Persian berries (Rhamnus trees).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号