首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Elucidation of the relationship between the structure and biological function of the glycosaminoglycans (GAGs) heparin and heparan sulfate (HS) presents an important analytical challenge mainly due to the difficulty in determining their fine structure. Heparin and HS are responsible for mediation of a wide range of biological actions through specific binding to a variety of proteins including those involved in blood coagulation, cell proliferation, differentiation and adhesion, and host–pathogen interactions. Therefore, there is a growing interest in characterizing the microstructure of heparin and HS and in elucidating the molecular level details of their interaction with peptides and proteins. This review discusses recent developments in the analytical methods used for sensitive separation, detection, and structural characterization of heparin and HS. A brief discussion of the analysis of contaminants in pharmaceutical heparin is also presented.  相似文献   

2.
Heparin (HE) and heparan sulfated glycosaminoglycans are well-known mediators of tissue development, maintenance and functions; the activities of these polysaccharides are depending mainly on their sulfate substitutions. The HE structure is also a very important feature in antithrombotic drug development, since the antithrombin binding site is composed by sequences of a specific sulfation pattern. The analysis of disaccharide composition is then a fundamental point of all the studies regarding HE/heparan sulfate glycosaminoglycan (and thereby proteoglycan) functions. The present work describes two analytical methods to quantify the disaccharides constituting HE and heparan sulfate chains. The use of PAGE of fluorophore-labeled saccharides and HPLC coupled with a fluorescence detector allowed in one run the identification of 90-95% of HE disaccharides and 74-100% of rat kidney purified heparan sulfate. Moreover, the protocol here reported avoid the N-sulfation disaccharides degradation, which may affect N-sulfated/N-acetylated disaccharides ratio evaluation. These methods could be also very important in clinical treatments since they are useful for monitoring the availability kinetics of antithrombotic drugs, such as low-molecular-weight HEs.  相似文献   

3.

Background  

Heparin/heparan sulfate (HS) proteoglycans are found in the extracellular matrix (ECM) and on the cell surface. A considerable body of evidence has established that heparin and heparan sulfate proteoglycans (HSPGs) interact with numerous protein ligands including fibroblast growth factors, vascular endothelial growth factor (VEGF), cytokines, and chemokines. These interactions are highly dependent upon the pattern of sulfation modifications within the glycosaminoglycan chains. We previously cloned a cDNA encoding a novel human endosulfatase, HSulf-2, which removes 6-O-sulfate groups on glucosamine from subregions of intact heparin. Here, we have employed both recombinant HSulf-2 and the native enzyme from conditioned medium of the MCF-7-breast carcinoma cell line. To determine whether HSulf-2 modulates the interactions between heparin-binding factors and heparin, we developed an ELISA, in which soluble factors were allowed to bind to immobilized heparin.  相似文献   

4.
The extracellular environment is largely comprised of complex polysaccharides, which were historically considered inert materials that hydrated the cells and contributed to the structural scaffolds. Recent advances in development of sophisticated analytical techniques have brought about a dramatic transformation in understanding the numerous biological roles of these complex polysaccharides. Glycosaminoglycans (GAGs) are a class of these polysaccharides, which bind to a wide variety of proteins and signaling molecules in the cellular environment and modulate their activity, thus impinging on fundamental biological processes. Despite the importance of GAGs modulating biological functions, there are relatively few examples that demonstrate specificity of GAG-protein interactions, which in turn define the structure-function relationships of these polysaccharides. Focusing on heparin/heparan (HSGAGs) and chondroitin/dermatan sulfate (CSGAGs), this review provides structural insights into the oligosaccharide-protein interactions and discusses some key and challenging aspects of understanding GAG structure-function relationships.  相似文献   

5.
Volpi N  Maccari F 《Electrophoresis》2002,23(24):4060-4066
A sensitive method has been developed for the visualization of nonradiolabelled glycosaminoglycans resolved by agarose gel electrophoresis using staining with toluidine blue followed by Stains-All procedure. This method, which can detect as little as 10 ng of a single species, can be used to stain a few micrograms of a complex polysaccharide mixture. The combination of agarose gel electrophoresis and sequential toluidine blue/Stains-All staining can be applied to the analysis of all the complex glycosaminoglycans (i.e., heparin, heparan sulfate, chondroitin/dermatan sulfate) and nonsulfated polyanions (i.e., hyaluronate, defructosylated capsular polysaccharide K4) as well as to comparisons of specificities of the glycosaminoglycan-degrading enzymes and the identification and quantification of the contaminations of other polysaccharides within glycosaminoglycan preparations with great sensitivity (about 0.1%). Furthermore, this method can be used to stain low-molecular-mass fractions and oligosaccharides derived from the natural polyanions, such as heparin. This procedure may be particularly valuable in situations where the availability of glycosaminoglycan is very limited.  相似文献   

6.
Heparin and heparan sulfate: structure and function   总被引:9,自引:0,他引:9  
This review covers the structure and function of heparin and heparan sulfate glycosaminoglycans. Their chemical structures are discussed, including recently developed methods for sequencing picomole to nanomole quantities of heparin- and heparan sulfate-derived oligosaccharides. The biosynthesis of heparin and heparan sulfate is reviewed as it relates to their diverse and varied structures, and their biological activities and functions are discussed. The literature up to August 2001 is reviewed, and 208 references are cited.  相似文献   

7.
Interaction of basic fibroblast growth factor (bFGF) with heparin/heparan sulfate proteoglycans protects the growth factor against proteolytic degradation and is essential for its cellular activity. Although the structural requirements of heparin and heparan sulfate for the high-affinity binding to bFGF have been extensively examined, studies on intact heparin proteoglycans are limited. In this report, the purity and the binding ability of a heparin proteoglycan-like molecule-the heparin-bovine serum albumin (heparin-BSA) conjugate-was examined using capillary zone electrophoresis (CZE). Furthermore, the affinity of bFGF binding to the heparin-BSA conjugate was studied using an enzyme solid-phase assay. Chondroitin sulfate, dermatan sulfate, hyaluronan, heparan sulfate and variously sulfated disaccharides derived from heparin and heparan sulfate were also studied for their ability to compete with the binding of bFGF to heparin. Heparin-BSA conjugate was synthesized by reductive amination and, following precipitation with 1.5 vols of ethanol-sodium acetate, it was obtained free of contaminating heparin. Heparin-BSA-bFGF conjugate was obtained following incubation of heparin-BSA with bFGF for 2 h at 37 degrees C. Intact heparin, heparin-BSA and heparin-BSA-bFGF conjugates were completely resolved by CZE using 50 mM phosphate, pH 3.5, as operating buffer, reversed polarity (30 kV) and detection at 232 nm. Competitive solid phase assay showed that, among the glycosaminoglycans tested, heparin exhibits the highest affinity binding to bFGF (IC(50) = 6.4 nM). Heparan sulfate showed a lower affinity as compared with that of heparin, whereas all other glycosaminoglycans and heparin/heparan sulfate-derived disaccharides tested showed minute effects. The developed CZE method is rapid and accurate and can be easily used to identify bFGF-interacting heparin preparations of biopharmaceutical importance.  相似文献   

8.
Electron transfer through gas phase ion-ion reactions has led to the widespread application of electron- based techniques once only capable in ion trapping mass spectrometers. Although any mass analyzer can in theory be coupled to an ion-ion reaction device (typically a 3-D ion trap), some systems of interest exceed the capabilities of most mass spectrometers. This case is particularly true in the structural characterization of glycosaminoglycan (GAG) oligosaccharides. To adequately characterize highly sulfated GAGs or oligosaccharides above the tetrasaccharide level, a high resolution mass analyzer is required. To extend previous efforts on an ion trap mass spectrometer, negative electron transfer dissociation coupled with a Fourier transform ion cyclotron resonance mass spectrometer has been applied to increasingly sulfated heparan sulfate and heparin tetrasaccharides as well as a dermatan sulfate octasaccharide. Results similar to those obtained by electron detachment dissociation are observed.  相似文献   

9.
Heparin and the related glycosaminoglycan, heparan sulfate, are polydisperse linear polysaccharides that mediate numerous biological processes due to their interaction with proteins. Because of the structural complexity and heterogeneity of heparin and heparan sulfate, digestion to produce smaller oligosaccharides is commonly performed prior to separation and analysis. Current techniques used to monitor the extent of heparin depolymerization include UV absorption to follow product formation and size exclusion or strong anion exchange chromatography to monitor the size distribution of the components in the digest solution. In this study, we used 1H nuclear magnetic resonance (NMR) survey spectra and NMR diffusion experiments in conjunction with UV absorption measurements to monitor heparin depolymerization using the enzyme heparinase I. Diffusion NMR does not require the physical separation of the components in the reaction mixture and instead can be used to monitor the reaction solution directly in the NMR tube. Using diffusion NMR, the enzymatic reaction can be stopped at the desired time point, maximizing the abundance of larger oligosaccharides for protein-binding studies or completion of the reaction if the goal of the study is exhaustive digestion for characterization of the disaccharide composition. In this study, porcine intestinal mucosa heparin was depolymerized using the enzyme heparinase I. The unsaturated bond formed by enzymatic cleavage serves as a UV chromophore that can be used to monitor the progress of the depolymerization and for the detection and quantification of oligosaccharides in subsequent separations. The double bond also introduces a unique multiplet with peaks at 5.973, 5.981, 5.990, and 5.998 ppm in the 1H-NMR spectrum downfield of the anomeric region. This multiplet is produced by the proton of the C-4 double bond of the non-reducing end uronic acid at the cleavage site. Changes in this resonance were used to monitor the progression of the enzymatic digestion and compared to the profile obtained from UV absorbance measurements. In addition, in situ NMR diffusion measurements were explored for their ability to profile the different-sized components generated over the course of the digestion.  相似文献   

10.
This work describes improved workup and instrumental conditions to enable robust, sensitive glycosaminoglycan (GAG) disaccharide analysis from complex biological samples. In the process of applying CE with LIF to GAG disaccharide analysis in biological samples, we have made improvements to existing methods. These include (i) optimization of reductive amination conditions, (ii) improvement in sensitivity through the use of a cellulose cleanup procedure for the derivatization, and (iii) optimization of separation conditions for robustness and reproducibility. The improved method enables analysis of disaccharide quantities as low as 1 pmol prior to derivatization. Biological GAG samples were exhaustively digested using lyase enzymes, the disaccharide products and standards were derivatized with the fluorophore 2‐aminoacridone and subjected to reversed polarity CE‐LIF detection. These conditions resolved all known chondroitin sulfate (CS) disaccharides or 11 of 12 standard heparin/heparan sulfate disaccharides, using 50 mM phosphate buffer, pH 3.5, and reversed polarity at 30 kV with 0.3 psi pressure. Relative standard deviation in migration times of CS ranged from 0.1 to 2.0% over 60 days, and the relative standard deviations of peak areas were less than 3.2%, suggesting that the method is reproducible and precise. The CS disaccharide compositions are similar to those obtained by our group using tandem MS. The reversed polarity CE‐LIF disaccharide analysis protocol yields baseline resolution and quantification of heparin/heparan sulfate and CS/dermatan sulfate disaccharides from both standard preparations and biologically relevant proteoglycan samples. The improved CE‐LIF method enables disaccharide quantification of biologically relevant proteoglycans from small samples of intact tissue.  相似文献   

11.
Heparanomics is the study of all the biologically active oligosaccharide domain structures in the entire heparanome and the nature of the interactions among these domains and their protein ligands. Structural elucidation of heparan sulfate and heparin oligosaccharides is a major obstacle in advancing structure–function relationships and heparanomics. There are several factors that exacerbate the challenges involved in the structural elucidation of heparin and heparan sulfate; therefore, there is great interest in developing novel strategies and analytical tools to overcome the barriers in decoding the enigmatic heparanome. This review focuses on the applications of isotopes, both radioisotopes and stable isotopes, in the structural elucidation of the complex heparanome at the disaccharide or oligosaccharide level using liquid chromatography, nuclear magnetic resonance spectroscopy, and mass spectrometry. This review also outlines the utility of isotopes in determining the substrate specificity of biosynthetic enzymes that eventually dictate the emergence of biologically active oligosaccharides.  相似文献   

12.
We report a carbohydrate microarray-based approach for the rapid, facile analysis of glycosaminoglycan-protein interactions. The key structural determinants responsible for protein binding, such as sulfate groups that participate in the interactions, were elucidated. Specificities were also readily compared across protein families or functional classes, and comparisons among glycosaminoglycan subclasses provided a more comprehensive understanding of protein specificity. To validate the approach, we showed that fibroblast growth factor family members have distinct sulfation preferences. We also demonstrated that heparan sulfate and chondroitin sulfate interact in a sulfation-dependent manner with various axon guidance proteins, including slit2, netrin1, ephrinA1, ephrinA5, and semaphorin5B. We anticipate that these microarrays will accelerate the discovery of glycosaminoglycan-binding proteins and provide a deeper understanding of their roles in regulating diverse biological processes.  相似文献   

13.
O-sulfotransferases (OSTs) are critical enzymes in the cellular biosynthesis of the biologically and pharmacologically important heparan sulfate and heparin. Recently, these enzymes have been cloned and expressed in bacteria for application in the chemoenzymatic synthesis of glycosaminoglycan-based drugs. OST activity assays have largely relied on the use of radioisotopic methods using [35S] 3′-phosphoadenosine-5′-phosphosulfate and scintillation counting. Herein, we examine alternative assays that are more compatible with a biomanufacturing environment. A high throughput microtiter-based approach is reported that relies on a coupled bienzymic colorimetric assay for heparan sulfate and heparin OSTs acting on polysaccharide substrates using arylsulfotransferase-IV and p-nitrophenylsulfate as a sacrificial sulfogroup donor. A second liquid chromatography-mass spectrometric assay, for heparan sulfate and heparin OSTs acting on structurally defined oligosaccharide substrates, is also reported that provides additional information on the number and positions of the transferred sulfo groups within the product. Together, these assays allow quantitative and mechanistic information to be obtained on OSTs that act on heparan sulfate and heparin precursors.
Figure
Herapan sulfate O-sulfotranferase coupled enzyme colorimetric assay  相似文献   

14.
The complex sulfation motifs of heparan sulfate glycosaminoglycans (HS GAGs) play critical roles in many important biological processes. However, an understanding of their specific functions has been hampered by an inability to synthesize large numbers of diverse, yet defined, HS structures. Herein, we describe a new approach to access the four core disaccharides required for HS/heparin oligosaccharide assembly from natural polysaccharides. The use of disaccharides rather than monosaccharides as minimal precursors greatly accelerates the synthesis of HS GAGs, providing key disaccharide and tetrasaccharide intermediates in about half the number of steps compared to traditional strategies. Rapid access to such versatile intermediates will enable the generation of comprehensive libraries of sulfated oligosaccharides for unlocking the “sulfation code” and understanding the roles of specific GAG structures in physiology and disease.  相似文献   

15.
Volpi N  Maccari F  Linhardt RJ 《Electrophoresis》2008,29(15):3095-3106
Complex natural polysaccharides, glycosaminoglycans (GAGs), are a class of ubiquitous macromolecules that exhibit a wide range of biological functions and participate and regulate multiple cellular events and (patho)physiological processes. They are generally present either as free chains (hyaluronic acid and bacterial acidic polysaccharides) or as side chains of proteoglycans (PGs; chondroitin/dermatan sulfate, heparin/heparan sulfate, and keratan sulfate) and are most often found in cell membranes and in the extracellular matrix. The recent emergence of modern analytical tools for their study has produced a virtual explosion in the field of glycomics. CE, due to its high resolving power and sensitivity, has been useful in the analysis of intact GAGs and GAG-derived oligosaccharides and disaccharides affording concentration and structural characterization data essential for understanding the biological functions of GAGs. In this review, novel off-line and on-line CE-MS and MS/MS methods for screening of GAG-derived oligosaccharides and disaccharides will be discussed.  相似文献   

16.
Heparan sulfate, a cell surface bound glycosaminoglycan polysaccharide, has been implicated in numerous biological functions. Heparan sulfate molecules are highly complex and diverse, yet deceivingly look simple and similar, rendering structure--function correlation tedious. Current chromatographic and mass spectrometric techniques have limitations for analyzing glycosaminoglycan samples that are in low abundance and that are large in size, due to their highly acidic nature arising from a large number of sulfate and of carboxylate groups. A new methodology was developed using capillary ion-paired reverse-phase C18 HPLC directly coupled to ESI-TOF-MS to address the above issues. On the basis of HS disaccharide analysis, dibutylamine was found to be the best suited for HS analysis among many ion-pairing agents investigated. Next, analysis of oligosaccharides derived from heparosan, the precursor for heparan sulfate, was undertaken to demonstrate its greater applicability in a more complex structural analysis. The established chromatographic conditions enabled the characterization of heparosan oligosaccharides of sizes up to tetracontasaccharide with high resolution in a single run and were amenable to negative ion electrospray MS in which sodium adduction and fragmentation were avoided. To date, these are the largest nonsulfated HS precursor oligosaccharides to be characterized by LC/MS. Finally, the current methodology was applied to the characterization of the biologically important ATIII binding pentasaccharide and its precursors, which differ from each other by sulfation pattern and/or degree of sulfation. All of these pentasaccharides were well-resolved and characterized by the LC/MS system with (34)SO(4) as a mass spectral probe. This newly developed methodology facilitates the purification and rapid characterization of biologically significant HS oligosaccharides, and will thus expedite their synthesis. These findings should undoubtedly pave the way in deciphering multiple functional arrangements, ascribed to many biological activities, which are predictably embedded in a single large chaotic, yet well-organized HS polysaccharide chain. Development of newer techniques for HS oligosaccharide analysis is greatly needed in the postgenome era as attention shifts to the functional implications of proteins and carbohydrates in general and HS in particular.  相似文献   

17.
Heparin-protein interactions   总被引:20,自引:0,他引:20  
Heparin, a sulfated polysaccharide belonging to the family of glycosaminoglycans, has numerous important biological activities, associated with its interaction with diverse proteins. Heparin is widely used as an anticoagulant drug based on its ability to accelerate the rate at which antithrombin inhibits serine proteases in the blood coagulation cascade. Heparin and the structurally related heparan sulfate are complex linear polymers comprised of a mixture of chains of different length, having variable sequences. Heparan sulfate is ubiquitously distributed on the surfaces of animal cells and in the extracellular matrix. It also mediates various physiologic and pathophysiologic processes. Difficulties in evaluating the role of heparin and heparan sulfate in vivo may be partly ascribed to ignorance of the detailed structure and sequence of these polysaccharides. In addition, the understanding of carbohydrate-protein interactions has lagged behind that of the more thoroughly studied protein-protein and protein-nucleic acid interactions. The recent extensive studies on the structural, kinetic, and thermodynamic aspects of the protein binding of heparin and heparan sulfate have led to an improved understanding of heparin-protein interactions. A high degree of specificity could be identified in many of these interactions. An understanding of these interactions at the molecular level is of fundamental importance in the design of new highly specific therapeutic agents. This review focuses on aspects of heparin structure and conformation, which are important for its interactions with proteins. It also describes the interaction of heparin and heparan sulfate with selected families of heparin-binding proteins.  相似文献   

18.
Surfen, bis-2-methyl-4-amino-quinolyl-6-carbamide, was previously reported as a small molecule antagonist of heparan sulfate (HS), a key cell-surface glycosaminoglycan found on all mammalian cells. To generate structure–activity relationships, a series of rationally designed surfen analogs was synthesized, where its dimeric structure, exocyclic amines, and urea linker region were modified to probe the role of each moiety in recognizing HS. An in vitro assay monitoring inhibition of fibroblast growth factor 2 binding to wild-type CHO cells was utilized to quantify interactions with cell surface HS. The dimeric molecular structure of surfen and its aminoquinoline ring systems was essential for its interaction with HS, and certain dimeric analogs displayed higher inhibitory potency than surfen and were also shown to block downstream FGF signaling in mouse embryonic fibroblast cells. These molecules were also able to antagonize other HS–protein interactions including the binding of soluble RAGE to HS. Importantly, selected molecules were shown to neutralize heparin and other heparinoids, including the synthetic pentasaccharide fondaparinux, in a factor Xa chromogenic assay and in vivo in mice. These results suggest that small molecule antagonists of heparan sulfate and heparin can be of therapeutic potential for the treatment of disorders involving glycosaminoglycan–protein interactions.  相似文献   

19.
The paper shows the ability of the fluorochrome tris(2,2'-bipyridine) ruthenium (II) (Rubipy) to detect heparan sulfate, heparin, and heparinase activity of M3 murine mammary adenocarcinoma cells as well as bacterial heparinases I, II, and III in native polyacrylamide gel electrophoresis (PAGE). The technique is based on the electrophoretic mobility of high molecular weight heparins and subsequent staining with Rubipy (50 micrograms/mL). The minimum content of heparin detected by fluorescence in a UV transilluminator was 25-50 ng. The number of Rubipy molecules bound to heparin, determined in relationship to the number of disaccharide units (DU), showed that two to six heparin disaccharide units are bound by each fluorochrome molecule. Scatchard plot analysis showed one Rubipy-binding site (Kd = (8.56 +/- 2.97) x 10(-5) M). Heparinase activity was determined by densitometric analysis of the fluorescence intensity of the heparin-containing band of the gel. While heparinase I (EC 4.2.2.7.) degraded heparin and, to a lower degree, partially N-desulfated N-acetylated heparin (N-des N-Ac), heparinase II (no EC number) could efficiently degrade heparan sulfate (HS) and partially N-des N-Ac heparin. Finally, heparinase III (EC 4.2.2.8.) degraded HS almost exclusively. Only heparin and N-des N-Ac heparin were substrates for M3 tumor cell heparinases. We describe a qualitative, sensitive and simple method to detect heparinase activity and determine its substrate specificity using Rubipy fluorescence with heparin and heparan sulfate in multiple biological samples tested in parallel.  相似文献   

20.
Abstract— The effect of UVB exposure on the distribution and synthesis of dermal proteoglycans was measured in the skin of hairless mice. Two groups of mice were included: one was irradiated for 10 weeks; the other was kept as control. After intraperitoneal injection of sodium 35S-sulfate, punch biopsies were taken for histology and proteoglycans were extracted from the remaining skin with 4 M guanidinium chloride, containing 3–[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (0.5%, weight per volume). Following proteolytic digestion, the glycosaminoglycan constituents were isolated and analyzed by quantitative cellulose acetate electrophoresis and enzymatic digestibility.
Under the influence of UVB radiation, newly synthesized proteoglycans measured by 35SO4 uptake increased as much as 60%. In addition, the irradiated skin had a higher average content of proteoglycan than had control skin (4981 μg vs 4134 μg/g dry weight). This could be ascribed to an increase in heparin (1400 vs 533 μ g/g dry weight) and heparan sulfate (472 vs 367 μg/g dry weight), whereas no change in the concentration of hyaluronic acid (1243 vs 1372 μg/g dry weight) and dermatan sulfate (1866 vs 1863 μg/g dry weight) was observed. The irradiated animals also exhibited a marked increase in the synthesis of heparan sulfate and heparin (62% and 71%, respectively). These results demonstrate that chronic doses of UVB altered proteoglycan metabolism through both quantitative and qualitative changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号