首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of electron beam treatment on DNA damage in mature larvae of chestnut weevil Curculio sikkimensis (Heller) was assessed using single-cell gel electrophoresis (DNA comet assay). Electrons at acceleration voltages of 0 (control), 300, 750, 1000, and 1500 kV at radiation doses of 1 and 4 kGy were used. Electron beam-treated chestnut larvae showed typical DNA fragmentation, compared with cells from non-treated ones which showed a more intact DNA. Investigations using the comet assay showed that the parameters including tail length, tail moment, olive tail moment as well as the quota of DNA damage at both the doses were significantly larger than the control batch larvae. Thus, this technique could contribute to analytical identification of an effective disinfestation and quarantine treatment.  相似文献   

2.
The alkaline and neutral comet assays have been widely used to assess DNA damage and repair in individual cells after in vivo or in vitro exposure to chemical or physical genotoxins. Cells processed under neutral conditions generate comets primarily from DNA double strand breaks, whereas under alkaline conditions, comets arise from DNA single and double strand breaks and alkali-labile lesions. A modified version of the alkaline comet assay, as described here, used silver stain to visualize the comets and a Gelbond base to facilitate the manipulation and processing of samples. To demonstrate how these modifications improve the assay, fibroblasts derived from both normal and Xeroderma pigmentosum (Xp) individuals were exposed to simulated solar radiation and the resulting DNA damage and repair evaluated and compared with results from the relevant literature. Comets from normal fibroblasts reached their maximum length at about an hour after irradiation. Dose-dependent increases in comet length were observed up to at least 360 mJ/cm2. In contrast, comet lengths from repair deficient Xp fibroblasts were shorter than normal cells reflecting their reduced capacity to generate single strand breaks by the excision of DNA dimers. For incubation times of more than 1 h, comet lengths from normal fibroblasts underwent a time-dependent decrease, supporting the contention that this change was related to the ligation step in the DNA repair process. These changes were compatible with the model of DNA damage and repair established by others for ultraviolet radiation.  相似文献   

3.
The single-cell gel/comet assay is an electrophoretic technique used to detect single-strand breaks in DNA. Damage is assessed examining individual cells under an epifluorescent microscope. UV-induced DNA damage consists mostly of the formation of pyrimidine dimers; therefore, most of the damage cannot be detected using a standard comet assay. The enzyme T4 endonuclease V breaks DNA strands at sites of pyrimidine dimers. The main objective of this work is to evaluate the comet assay to detect UV-induced damage in DNA after an initial treatment of cells with T4 endonuclease V. This work was conducted on Rhodomonas sp. (Cryptophyta), a marine unicellular flagellate. Cells of Rhodomonas sp. were exposed to 12 h visible + ultraviolet-A + ultraviolet-B (VIS + UVA + UVB) and VIS (control), with and without T4 endonuclease V. Cells exposed to VIS + UVA + UVB showed approximately 200% more damage than control if these were treated with T4 endonuclease V. Rhodomonas sp. were exposed to 3, 6, 9 and 12 h of VIS, VIS + UVA and VIS + UVA + UVB. Damage induced by VIS + UVA + UVB as detected by the comet assay increased along with exposure time. However, damage caused by VIS and VIS + UVA remained relatively constant at all times. Results of this study indicate that the comet assay is more sensitive to UV radiation damage when used in conjunction with T4 endonuclease V. This modification of the comet assay can be used as an alternative technique to detect DNA damage in single cells caused by UV radiation.  相似文献   

4.
We attempted a DNA comet assay under alkaline conditions to verify the irradiation treatment of pests. Lasioderma serricorne (Fabricius) were chosen as test insects and irradiated with gamma rays from a 60Co source at 1 kGy. We conducted the comet assay immediately after irradiation and over time for 7 day. Severe DNA fragmentation in L. serricorne cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. The parameters of the comet image analysis were calculated, and the degree of DNA damage and repair were evaluated. Values for the Ratio (a percentage determined by fluorescence in the damaged area to overall luminance, including intact DNA and the damaged area of a comet image) of individual cells showed that no cells in the irradiated group were included in the Ratio<0.1 category, the lowest grade. This finding was observed consistently throughout the 7-day post-irradiation period. We suggest that the Ratio values of individual cells can be used as an index of irradiation history and conclude that the DNA comet assay under alkaline conditions, combined with comet image analysis, can be used to identify irradiation history.  相似文献   

5.
Photodynamic therapy (PDT) kills cells via the production of singlet oxygen and other reactive oxygen species. PDT causes chromosomal damage and mutation to cultured cells. However, DNA damage does not contribute to the phototoxic effect. To study the effect of Photofrin-PDT-induced DNA damage, we used the comet assay in combination with endonuclease III and formamidopyrimidine DNA glycosylase and a human keratinocyte cell line to investigate photogenotoxicity and its prevention by tocopherol (TOC). This study shows that PDT induced DNA damage in HaCaT cells at doses allowing cells to survive 7 days after irradiation. alpha-TOC did not prevent the acute cell lysis caused by Photofrin-PDT but did prevent Photofrin-PDT-induced DNA damage. However, the concentration of TOC that conferred protection (100 microM) was higher than is detected in human serum. Base oxidation was also measured using the comet assay. Although TOC could prevent frank DNA strand breaks caused by PDT, it was unable to decrease the level of base oxidation as revealed by enzyme-sensitive sites. It is suggested that the potential genotoxic risk from laser-PDT could be low, and that topical micro-TOC at a high concentration may be useful in preventing some types of DNA damage without preventing acute photolysis after Photofrin-PDT.  相似文献   

6.
Nanoscale particles can have impressive and useful characteristics, but the same properties may be problematic for human health. From this perspective it is critical to assess the ability of nanoparticles to cause DNA damage. This review focuses on the use of the comet assay in nanotoxicology research. In the alkaline version of the assay, DNA strand breaks and alkali-labile sites are detected and oxidatively damaged DNA can be analyzed using the enzyme formamidopyrimidine glycosylase. The article reviews studies that have used the comet assay to investigate the toxicity of manufactured nanoparticles. It is shown that at least 46 cellular in vitro studies and several in vivo studies have used the comet assay and that the majority of the nanoparticles tested cause DNA strand breaks or oxidative DNA lesions. This is not surprising considering the sensitivity of the method and the reactivity of many nanomaterials. Interactions between the particles and the assay cannot be totally excluded and need further consideration. It is concluded that studies including several particle types, to enable the assessment of their relative potency, are valuable as are studies focusing both on comet assay end points and mutagenicity. Finally, the article discusses the potential future use of the comet assay in human biomonitoring studies, which could provide valuable information for hazard identification of nanoparticles.  相似文献   

7.
Ultraviolet (UV)-mediated DNA damage in various tissues has been well documented. However, research on the damaging effect of UV irradiation on the DNA of corneal epithelium is scarce, even though this is of interest because the cornea is directly exposed to damaging solar (UV) radiation. In this study, we developed a corneal epithelium Comet assay model to assess the background DNA damage (as strand breaks) in cells retrieved from different layers of the porcine corneal epithelium, and to investigate the effect of UV irradiation on DNA damage in corneal epithelial cells. Results show that the background DNA strand breaks decreased significantly (P < 0.001) toward deeper layers of the epithelium. Exposure to the same intensity (0.216 J/cm2) of UVA, UVB and UVC caused a significant (P < 0.001) increase in DNA strand breaks of deeper-layer cells: mean +/- SD %DNA scores (10 gels per treatment, with 100 irradiated cells scored per gel) were 10.2% +/- 1.4% for UVA, 27.4% +/- 4.6% for UVB, and 14.7% +/- 1.8% for UVC compared with 4.2% +/- 0.5% for controls (ambient room light). This study has shown for the first time that the Comet assay for DNA strand breaks can be used successfully with corneal epithelial cells. This report will support future studies investigating environmental influences on corneal health and the assessment of possible protective strategies, and in applying DNA lesion-specific versions of the Comet assay in this corneal epithelial cell model.  相似文献   

8.
This study was designed to determine the genotoxic effects of visible (400–800 nm) and ultraviolet A (UVA)/visible (315–800 nm) lights on human keratinocytes and CHO cells. The alkaline comet assay was used to quantify DNA-damage. In addition, photo-dependent cytogenetic lesions were assessed in CHO cells by the micronucleus test. Three protective compounds [ectoin, l-ergothioneine (ERT) and mannitol] were tested with the comet assay for their effectiveness to reduce DNA single-strand breaks (SSB). Finally, the genomic photoprotections of two broad-band sunscreens and their tinted analogues were assessed by the comet assay. The WST-1 cytotoxicity assay revealed a decrease of the keratinocyte viability of 30% and 13% for the highest UVA/visible and visible irradiations (15 and 13.8 J/cm2, respectively). Visible as well as UVA/visible lights induced DNA SSB and micronuclei, in a dose-dependent manner. The level of DNA breakage induced by visible light was 50% of the one generated by UVA/visible irradiation. However, UVA radiations were 10 times more effective than visible radiations to produce SSB. The DNA lesions induced by visible and UVA/visible lights were reduced after a 1-h preincubation period with the three tested compounds. The maximal protective effects were 92.7%, 97.9% and 52.0% for ectoin (0.1 mM), ERT (0.5 mM) and mannitol (1.5 mM), respectively, against visible light and 68.9%, 59.8% and 62.7% for ectoin (0.1 mM), ERT (0.5 mM) and mannitol (1.5 mM), respectively, against UVA/visible light. Thus, visible light was genotoxic on human keratinocytes and CHO cells through oxidative stress mechanisms similar to the ones induced by UVA radiations. The four tested sunscreens efficiently prevented DNA lesions that were induced by both visible and UVA/visible irradiations. The tinted sunscreens were slightly more effective that their colorless analogues. There is a need to complement sunscreen formulations with additional molecules to obtain a complete internal and external photoprotection against both UVA and visible lights.  相似文献   

9.
Cataract is the major cause for legal blindness in the world. Oxidative stress on the lens epithelial cells (hLECs) is the most important factor in cataract formation. Cumulative light‐exposure from widely used light‐emitting diodes (LEDs) may pose a potential oxidative threat to the lens epithelium, due to the high‐energy blue light component in the white‐light emission from diodes. In the interest of perfecting biosafety standards for LED domestic lighting, this study analyzed the photobiological effect of white LED light with different correlated color temperatures (CCTs) on cultured hLECs. The hLECs were cultured and cumulatively exposed to multichromatic white LED light with CCTs of 2954, 5624, and 7378 K. Cell viability of hLECs was measured by Cell Counting Kit‐8 (CCK‐8) assay. DNA damage was determined by alkaline comet assay. Intracellular reactive oxygen species (ROS) generation, cell cycle, and apoptosis were quantified by flow cytometry. Compared with 2954 and 5624 K LED light, LED light having a CCT of 7378 K caused overproduction of intracellular ROS and severe DNA damage, which triggered G2/M arrest and apoptosis. These results indicate that white LEDs with a high CCT could cause significant photobiological damage to hLECs.  相似文献   

10.
A simple technique of microgel electrophoresis of single cells (DNA comet assay) was used to detect DNA comets in irradiated quail meat samples. Obtained DNA comets were evaluated by both photomicrographic and image analysis. Quail meat samples were exposed to radiation doses of 0.52, 1.05, 1.45, 2.00, 2.92 and 4.00 kGy in gamma cell (gammacell 60Co, dose rate 1.31 kGy/h) covering the permissible limits for enzymatic decay and stored at 2 °C. The cells isolated from muscle (chest, thorax) in cold PBS were analyzed using the DNA comet assay on 1, 2, 3, 4, 7, 8 and 11 day post irradiation. The cells were lysed between 2, 5 and 9 min in 2.5% SDS and electrophorosis was carried out at a voltage of 2 V/cm for 2 min. After propidium iodide staining, the slides were evaluated through a fluorescent microscope. In all irradiated samples, fragmented DNA stretched towards the anode and damaged cells appeared as a comet. All measurement data were analyzed using BS 200 ProP with software image analysis (BS 200 ProP, BAB Imaging System, Ankara, Turkey). The density of DNA in the tails increased with increasing radiation dose. However, in non-irradiated samples, the large molecules of DNA remained relatively intact and there was only minor or no migration of DNA; the cells were round or had very short tails only. The values of tail DNA%, tail length and tail moment were significantly different and identical between 0.9 and 4.0 kGy dose exposure, and also among storage times on day 1, 4 and 8. In conclusion, the DNA Comet Assay EN 13784 standard method may be used not only for screening method for detection of irradiated quail meat depending on storage time and condition but also for the quantification of applied dose if it is combined with image analysis. Image analysis may provide a powerful tool for the evaluation of head and tail of comet intensity related with applied doses.  相似文献   

11.
12.
13.
DNA repair plays a central role in the cellular response to UV. In this work we have studied the response of skin cells (i.e. fibroblasts and keratinocytes) from the same or from different individuals after both ultraviolet-B (UV-B) and ultraviolet-C (UV-C) irradiations using the comet assay to characterize the specific cellular response to UV-induced DNA damage. Cells were irradiated with increasing doses of UV-B or UV-C. To study the UV dose dependency of initial steps of DNA repair, namely recognition and incision at DNA damage level, the comet assay was performed, under alkaline conditions, 60 min after UV irradiation to allow detection of DNA strand breaks. Comparative analysis of tail moment values after UV exposure of cells from the same or from different individuals showed interexperimental and interindividual variations, implying that repeated assays are necessary to characterize the individual DNA repair capacity. With increasing doses of UV in keratinocytes, a plateau was rapidly reached after irradiation, whereas in fibroblasts a linear dose-effect relationship was observed. These interindividual variations associated with cellular specificity in DNA response may be of significance in skin cell and individual susceptibility toward UV-induced carcinogenesis.  相似文献   

14.
15.
In this paper, we present for the first time the evaluation of cytotoxicity and genotoxicity of de novo synthesized pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides MM129, MM130, and MM131 in human tumor cell lines: HeLa, HCT 116, PC-3, and BxPC-3. Cytotoxic and genotoxic properties of the tested compounds were estimated using the MTT assay, comet assay (alkaline and neutral version), and γ-H2AX immuno-staining. Examined sulfonamides exhibited strong anticancer properties towards tested cells in a very low concentration range (IC50 = 0.17–1.15 μM) after 72 h exposure time. The results of the alkaline and neutral version of the comet assay following 24 h incubation of the cells with tested compounds demonstrated the capability of heterocycles to induce significant DNA damage in exposed cells. HCT 116 cells were the most sensitive to the genotoxic activity of novel tricyclic pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides in the neutral version of the comet assay. Immunocytochemical detection of γ-H2AX showed an increase in DNA DSBs level in the HCT 116 cell line, after 24 h incubation with all tested compounds, confirming the results obtained in the neutral comet assay. Among all investigated compounds, MM131 showed the strongest cytotoxic and genotoxic activity toward all tested cell types. In conclusion, our results suggest that MM129, MM130, and MM131 exhibit high cytotoxic and genotoxic potential in vitro, especially towards the colorectal cancer cell line HCT 116. However, further investigations and analyses are required for their future implementation in the field of medicine.  相似文献   

16.
This work evaluated the photoprotective and antigenotoxic effects against ultraviolet B (UVB) radiation of flavonoid compounds apigenin, naringenin and pinocembrin. The photoprotective efficacy of these compounds was estimated using in vitro photoprotection indices, and the antigenotoxicity against UVB radiation was evaluated using the SOS chromotest and an enzymatic (proteinase K/T4 endonuclease V enzyme) comet assay in UV‐treated Escherichia coli and human (HEK‐293) cells, respectively. Naringenin and pinocembrin showed maximum UV‐absorption peak in UVC and UVB zones, while apigenin showed UV‐absorption capability from UVC to UVA range. These compounds acted as UV filters reducing UV‐induced genotoxicity, both in bacteria and in human cells. The enzymatic comet assay resulted highly sensitive for detection of UVB‐induced DNA damage in HEK‐293 cells. In this work, the photoprotective potential of these flavonoids was widely discussed.  相似文献   

17.
Exponentially growing cells cultured in medium containing bromodeoxyuridine, then exposed to UVA light in the presence of the dye Hoechst 33258, show significant levels of DNA strand breaks and base damage. This dye–bromodeoxyuridine–UVA photolysis treatment is markedly cytotoxic. We now demonstrate that exposure of cells to the agents used in photolysis leads directly to the formation of chromosome aberrations. Furthermore, we demonstrate that this photochemical treatment induces delayed chromosomal instability in clonal populations derived from single progenitor cells surviving photolysis. These results suggest that photolysis-induced DNA damage leads to chromosome rearrangements that could account for the observed cytotoxicity. Furthermore, in those cells surviving photolysis, the delayed effects of this treatment can be observed several generations after exposure and are manifested as compromised genomic integrity.  相似文献   

18.
A new mixed‐ligand copper(II) complex, [Cu(L)(phen)]⋅MeOH (L = 4‐chloro‐2‐[(2‐hydroxyphenyl)iminomethyl]phenol), was synthesized. It belongs to the orthorhombic crystal system and Cu(II) is five‐coordinated in a seriously distorted square pyramidal geometry. DNA binding experiments confirmed an intercalative mode of interaction of the complex with calf thymus DNA. In a DNA cleavage experiment with the complex, as hydrogen peroxide was involved, oxidative DNA cleavage occurred and double‐stranded breaks even appeared at certain concentration. The strong interaction with bovine serum albumin suggested that the complex might be transported by protein. The complex exhibited more significant cytotoxicity in HeLa cells (IC50 = 0.46 ± 0.01 μM) for 48 h, compared with cisplatin (10.61 ± 0.86 μM). This work indicated that the complex could induce apoptosis in a dose‐dependent manner and was associated with cell cycle arrest to some extent. Being consistent with the results of DNA cleavage experiment, comet assay indicated that the complex induced severe DNA fragmentation. The results showed the production of reactive oxygen species increased with increasing concentration of the complex. The complex was suggested to be capable of promoting HeLa cell apoptosis through an oxidative DNA damage pathway.  相似文献   

19.
The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii.  相似文献   

20.
The generation of reactive oxygen species is thought to cause extensive oxidative damage to various biomolecules such as DNA, RNA, and protein. In this study, the preventive, suppressive, and protective effects of in vitro supplementation with electrolyzed-reduced water on H2O2-induced DNA damage in human lymphocytes were examined using a comet assay. Pretreatment, cotreatment, and posttreatment with electrolyzed-reduced water enhanced human lymphocyte resistance to the DNA strand breaks induced by H2O2 in vitro. Moreover, electrolyzed-reduced water was much more effective than diethylpyrocarbonate-treated water in preventing total RNA degradation at 4 and 25°C. In addition, electrolyzed-reduced water completely prevented the oxidative cleavage of horseradish peroxidase, as determined using sodium dodecyl sulfate-polyacrylamide gels. Enhancement of the antioxidant activity of ascorbic acid dissolved in electrolyzed-reduced water was about threefold that of ascorbic acid dissolved in nonelectrolyzed deionized water, as measured by a xanthine-xanthine oxidase superoxide scavenging assay system, suggesting an inhibitory effect of electrolyzed-reduced water on the oxidation of ascorbic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号