首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The effect of three-dimensional perturbed velocity and three-dimensional perturbed current density on the beam-wave interaction of dielectric Cherenkov maser is analysed by use of the self-consistent linear field theory. Three distinct cases are considered. First, the propagation of the electron beam in an annular dielectric liner enclosed by a loss-free conducting wall is investigated. The dispersion equation and the simultaneous condition of the beam-wave interaction are derived. It's clearly shown that the instability of the interaction results from the coupling of the TM mode in the dielectric lined slow-wave waveguide to the beam mode via the electron beam. And the coupling is proportional to the density of the beam. The growth rate of the wave produced by the electron beam are obtained. Then, the case of a relativistic electron beam guided by a longitudinal magnetic field in the same slow-wave structure is examined. The motion of electrons could be approximated to be one-dimensional when the simultaneous condition of the beam-wave interaction of dielectric Cherenkov maser is satisfied. Finally, the effect of the background plasma on the instability of the beam-wave interaction is studied.This work is supported by National Natural Science Foundation of China.  相似文献   

2.
吴坚强 《强激光与粒子束》2004,16(11):1463-1467
 利用自洽线性场理论,导出了薄环形相对论电子注通过填充等离子体的介质同轴波导中的注波互作用色散方程,得到了注波互作用产生切伦科夫辐射的同步条件和波增长率。分析了填充等离子体后的波与电子注之间的能量交换及等离子体密度对色散特性、波增长率和注波能量交换的影响。分析结果表明:切伦科夫辐射是由沿介质同轴波导传播的慢波与沿薄环形相对论电子注传播的负能空间电荷波耦合所致,且其耦合强度与电子注的密度成正比;输出频率和波增长率随着填充等离子体密度的增大而提高;保持一定的输出频率,增大电子注的束流可得到高的微波输出功率。  相似文献   

3.
未磁化等离子体介质切连科夫脉塞的线性理论   总被引:1,自引:0,他引:1       下载免费PDF全文
利用线性自洽场理论,讨论了电子在扰动场作用下的三维扰动.在此基础上,对常用的薄环形相对论电子环束在填充未磁化等离子体的介质筒慢波波导中激励的切连科夫辐射进行了详细的分析,导出了此电子环束与慢波系统中任意波导模互作用的色散方程和波增长率,并对其进行了详细的分析和讨论.分析表明切连科夫辐射是由其波导模与电子注模耦合所致.最后详细计算和分析了等离子体密度对色散特性和波增长率的影响 关键词:  相似文献   

4.
On the basis of the reference [1], excitation of Cherenkov radiation with arbitrary azimuthal mode number by a thin annular relativistic electron beam in a plasma-filled dielectric-lined slow-wave waveguide is studied in this paper. A determinantal dispersion equation is obtained. This general dispersion equation is valid for arbitrary azimuthal mode number, and the growth rate of the wave is derived from it. Finally, the effects of the background plasma density on the dispersion relation, the background plasma density and the electron beam radius on the growth rate of the wave are presented. Formulas and results offerd in this paper are general, and are of particular value of reference to the beam-wave interaction in azimuthally unsymmetrical slow-wave waveguide.This work is supported by National Natural Science Foundation of China and 863 Project.  相似文献   

5.
王斌  唐昌建  刘濮鲲 《物理学报》2006,55(11):5953-5958
对入射等离子体的相对论电子注(REB)在离子通道中可能产生切连科夫(Cherenkov)辐射的问题进行了论证与研究.利用线性理论分析了离子背景下的注-波互作用关系,导出了系统的色散方程与同步辐射条件.结果表明,系统的电磁不稳定性是由离子通道中TM模与电子注模通过电子注耦合所致,其微观机理是离子对电子注的聚焦.对处于运动等离子体状态下的离子-注系统进行了严格地理论分析,获得了通道内辐射波的频偏与波增长率公式,并通过数值模拟计算讨论了系统有关参数对它们的影响. 关键词: 离子通道 等离子体 切连科夫辐射  相似文献   

6.
Injection of background plasma into the beam-wave interaction region can greatly enhance the beam-wave interaction efficiency and the microwave output power of the device. In this paper, a new type of plasma-filled slow-wave structure, i.e., plasma-filled, dielectric-loaded coaxial cylindrical waveguide with a dielectric ring enclosing tightly the inner conductor, is developed. The Cherenkov radiation excited by the beam-wave interaction in the slow-wave structure is examined by use of the self-consistent linear field theory. The dispersion equation and the synchronized condition of the beam-wave interaction are derived. It's clearly shown that the Cherenkov radiation excited by the beam-wave interaction results from the coupling between the slow electromagnetic wave, TM-modes, propagated along the slow-wave structure and the negative-energy space-charge wave propagated along the relativistic electron beam. And the wave growth rate is solved, and the beam-wave energy exchange in the presence of the background plasma is discussed. Finally, the effects of the background plasma density on the dispersion characteristics, the distribution of the longitudinal fluctuating electric field, the wave growth rate and the beam-wave energy exchange are calculated and discussed.  相似文献   

7.
吴坚强  刘盛纲 《物理学报》1997,46(10):1946-1952
提出了一种新的注波互作用慢波系统——在部分填充介质的波导中放置一等离子体柱.利用线性自洽场理论,对这一新慢波系统中的相对论电子注与波的互作用进行了分析.具体针对薄环形相对论电子注包围等离子体柱和在等离子体柱内穿过慢波系统这两种情况,分别导出了决定注波互作用的色散方程.并对色散方程直接进行了数值求解,求得了系统的截止频率、工作频率和波增长率等.讨论了等离子体柱等有关参数对它们的影响. 关键词:  相似文献   

8.
相对论返波管注-波作用不稳定区的研究   总被引:2,自引:1,他引:1       下载免费PDF全文
 以环形电子注驱动的、正弦型周期慢波结构的相对论返波管(RBWO)为模型,理论推导出RBWO慢波结构的色散方程,画出了不包括和包括电子注的色散曲线,然后采用在复平面上绘制等高线图进行逼近的方法对注-波作用不稳定区工作频率的实部和虚部进行了求解,绘出了完整的包括电子注的慢波结构色散关系曲线,并估算了微波的时间增长率和能量转换效率。研究得出:当a(电子注电流参数)较大时,电磁波与慢电荷波的相互作用是不稳定的;而在a较小时,注-波相互作用具有明显的三波作用的特点;微波增长是通过注-波不稳定作用引起的;随着a的增大,微波时间增长率先增大后减小,在a为0.02时有最大值1.37,此时的能量转换效率为19%;增大电子注半径或慢波结构的波纹深度都可以增强注-波不稳定作用。  相似文献   

9.
薄环形等离子体介质切伦柯夫脉塞   总被引:1,自引:1,他引:0       下载免费PDF全文
 理论分析了无限大引导磁场情况下的薄环形等离子体介质切伦柯夫脉塞。得出了通入相对论电子注时行列式形式的热腔色散方程,并求出了波增长率。针对不同等离子体密度下,对色散方程以及波增长率进行数值计算和模拟验证。研究发现与电子注作用的主要模式为低频等离子体模式中的前两个模式,随着等离子体密度的升高,脉塞中心工作频率升高、增益变大、带宽明显变宽,由模拟结果可以看出:等离子体频率为4.5×1019 m-3时对应着最大的输出功率为80 MW,效率为19.75%,频率为15.55 GHz,继续增大等离子体密度虽然可以使输出频率进一步提高,但是同时会使输出功率迅速下降。  相似文献   

10.
袁学松  鄢扬  刘盛纲 《物理学报》2011,60(1):14102-014102
采用等效媒质处理方法来研究有限引导磁场下沿纵向运动的相对论环形电子注.首先建立运动坐标系以电子注纵向速度匀速运动,在运动坐标系中电子注可以被考虑成静止的磁化等离子体,再通过四维空间的洛伦兹变换得到电子注在静止的实验室坐标系下可以被等效为双各向异性媒质,其不仅具有张量形式的电导率和磁导率,还具有手征特性.在此基础上同时考虑了由于电子注表面波动所引起的表面电流密度.采用该方法研究了有限引导磁场下圆柱波导中沿纵向运动的相对论环形电子注,推导出该模型的色散方程,并进行了数值计算.计算结果表明该研究方法能够得到更准 关键词: 相对论环形电子注 磁化等离子体 色散特性  相似文献   

11.
The linearized Lorentz force, continuity equation, and Maxwell's equations are used to calculate the system dispersion relation for a coaxial configuration of the dielectric Cherenkov maser. The system consists of two coaxial conductors lined with dielectric and an annular relativistic electron beam, which propagates between the two liners. The dispersion relation for the beam and dielectric-lined coaxial waveguide structure and the no-beam system that describes the dependence of the generated frequency on the coaxial waveguide parameters are presented. Using the linearized dispersion relation, the growth rate for the beam-TM0n waveguide mode instability is calculated in the strong-coupling tenuous beam limit  相似文献   

12.
A relativistic annular electron beam passing through a high-density plasma excites Langmuir waves via Cerenkov interaction. The Langmuir waves are backscattered off ions via nonlinear ion Landau damping. At moderately high amplitudes these waves are parametrically up-converted by the beam into high-frequency electromagnetic radiation, as observed in some recent experiments. A nonlocal theory of this process is developed in a cylindrical geometry. It is seen that the growth rate of the Langmuir wave scales as one-third the power of beam density. The growth rate of parametric instability scales as one-fourth the power of beam density and the square root of beam thickness  相似文献   

13.
高功率高增益大直径相对论返波管   总被引:4,自引:0,他引:4  
对大直径同轴相对论返波管采用双板波纹波导模型结合电子运动的罗伦兹力方程、电荷连续性方程和电磁波麦克斯韦方程建立了系统的线性流体理论.使用该理论详细地研究了器件的各系统参数对束波相互作用,特别是对微波指数增长率的影响.给出了3cm波段的大直径同轴相对论返波管实验装置的系统参数.  相似文献   

14.
A coaxial waveguide partially filled with a dielectric as the slow-wave structure of a dielectric Cherenkov maser is investigated. The dispersion of the fundamental mode of this waveguide is very weak at phase velocities close to the velocity of light, and for this reason a very wide gain bandwidth is possible under conditions of an interaction with a relativistic electron beam. The dispersion equation for an infinitely thin tubular beam in a coaxial waveguide with a dielectric liner adjoining either the outer or inner conducting surface is derived. The gain bandwidth as a function of the parameters of the electron beam and the slow-wave system are investigated on the basis of numerical solution of the dispersion equation, and a comparison with similar dependences for the conventional configuration of a dielectric Cherenkov maser is made. The structural features of the coaxial configuration which enable novel approaches to the problems of matching the microwave signal at the entrance and exit of the system are discussed. Zh. Tekh. Fiz. 67, 66–72 (May 1997)  相似文献   

15.
Abstract

The excitation of surface plasma waves due to the interaction of an elliptical relativistic density modulated electron beam with the magnetized dusty plasma column with elliptical cross-section has been studied. The dispersion relation of surface plasma waves has been retrieved from the derived dispersion relation by considering that the beam is absent and there is no dust in the plasma elliptical cylinder. It is shown that the Cherenkov and fast cyclotron interactions appear between the beam and eigen-modes of plasma column. The growth rate of the instability increases with the beam density and modulation index as one-third power of the beam density in Cherenkov interaction and is proportional to the square root of beam density in fast cyclotron interaction. The numerical results and graphs are presented, too.  相似文献   

16.
Spontaneous shortening of radiation pulses of Cherenkov microwave generators based on the interaction of a high-current relativistic electron beam with preliminarily generated plasma was studied in a numerical model. Microwave pulse shortening is caused by the appearance of a gradually expanding region near the collector, from which plasma is expelled by an electrostatic field of relativistic electrons. The absence of plasma results in a severalfold decrease in the plasma wave reflectance from the collector and violation of generator self-excitation conditions. The microwave emission duration increases with the plasma ion mass.  相似文献   

17.
In this paper, a high power relativistic backward wave oscillator (BWO) experiment is reported. A 230 keV, 2 kA, 150 ns relativistic electron beam is generated using a Marx generator. The beam is then injected into a hollow rippled wall metallic cylindrical tube that forms a slow wave structure. The beam is guided using an axial pulsed magnetic field having a peak value 1 T and duration 1 ms. The field is generated by the discharge of a capacitor bank into a solenoidal coil. A synchronization circuit ensures the generation of the electron beam at the instant when the axial magnetic field attains its peak value. The beam interacts with the SWS modes and generates microwaves due to Cherenkov interaction. Estimated power of 2 MW in TM01 mode is observed.   相似文献   

18.
The electromagnetic wave scattering from a dielectric rod placed in a non-coaxial thin annular magnetized relativistic rotating electron beam is simulated. The resonance frequency shift and the effective factors on it are investigated. In addition, the dependencies of pattern of scattering to the plasma frequency, the rotating frequency, geometrical dimensions and dielectric constant of dielectric rod have been investigated. The eccentricity effect on the resonance frequencies is studied.  相似文献   

19.
李海容  唐昌建  王顺金 《中国物理 B》2010,19(12):124101-124101
This paper addresses the formulae and numerical issues related to the possibility that fast wave may be grown when a relativistic electron beam through an ion channel in a cylindrical metal waveguide.To derive the dispersion equations of the beam-wave interaction,it solves relativistic Lorentz equation and Maxwell’s equations for appropriate boundary conditions.It has been found in this waveguide structure that the TM 0m modes are the rational operating modes of coupling between the electromagnetic modes and the betatron modes.The interaction of the dispersion curves of the electromagnetic TM 0m modes and the upper betatron modes is studied.The growth rates of the wave are obtained,and the effects of the beam radius,the beam energy,the plasma frequency,and the beam plasma frequency on the wave growth rate are numerically calculated and discussed.  相似文献   

20.
Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantity is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号