首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct measurements of the dynamic lift force acting on two tandem cylinders in cross-flow are performed in the presence and absence of acoustic resonance. The dynamic lift force is measured because it represents the integrated effect of the unsteady wake and therefore it is directly related to the dipole sound source generated by vortex shedding from the cylinder. Three spacing ratios inside the proximity interference region, L/D=1.75, 2.5 and 3 are considered. During the tests, the first transverse acoustic mode of the duct housing the cylinders is self-excited. In the absence of acoustic resonance, the measured dynamic lift coefficients agree with those reported in the literature. When the acoustic resonance is initiated, a drastic increase in the dynamic lift coefficient is observed, especially for the downstream cylinder. This can be associated with abrupt changes in the phase between the lift forces and the acoustic pressure. The dynamic lift forces on both cylinders are also decomposed into in-phase and out-of-phase components, with respect to the resonant sound pressure. The lift force components for the downstream cylinder are found to be dominant. Moreover, the out-of-phase component of the lift force on the downstream cylinder is found to become negative over two different ranges of flow velocity and to virtually vanish between these two ranges. Acoustic resonance of the first mode is therefore excited over two ranges of flow velocity separated by a non-resonant range near the velocity of frequency coincidence. It is therefore concluded that the occurrence of acoustic resonance is controlled by the out-of-phase lift component of the downstream cylinder, whereas the effect of the in-phase lift component is confined to causing small changes in the acoustic resonance frequency.  相似文献   

2.
Results are presented for flow-induced vibrations of a pair of equal-sized circular cylinders of low nondimensional mass (m*=10) in a tandem arrangement. The cylinders are free to oscillate both in streamwise and transverse directions. The Reynolds number, based on the free-stream speed and the diameter of the cylinders, D is 100 and the centre-to-centre distance between the cylinders is 5.5D. The computations are carried out for reduced velocities in the range 2≤U*≤15. The structural damping is set to zero for enabling maximum amplitudes of oscillation. A stabilized finite element method is utilized to carry out the computations in two dimensions. Even though the response of the upstream cylinder is found to be qualitatively similar to that of an isolated cylinder, the presence of a downstream cylinder is found to have significant effect on the behaviour of the upstream cylinder. The downstream cylinder undergoes very large amplitude of oscillations in both transverse and streamwise directions. The maximum amplitude of transverse response of the downstream cylinder is quite similar to that of a single cylinder at higher Re beyond the laminar regime. Lock-in and hysteresis are observed for both upstream and downstream cylinders. The downstream cylinder undergoes large amplitude oscillations even beyond the lock-in state. The phase between transverse oscillations and lift force suffers a 180 jump for both the cylinders almost in the middle of the synchronization regime. The phase between the transverse response of the two cylinders is also studied. Complex flow patterns are observed in the wake of the freely vibrating cylinders. Based on the phase difference and the flow patterns, the entire flow range is divided into five sub-regions.  相似文献   

3.
The impulsively started flow field for circular cylinders of equal diameter arranged in tandem was investigated using flow visualization and particle image velocimetry (PIV), over a longitudinal pitch ratio range ofL /D=1·0–3·0, and for Reynolds numbers from Re=1200–3800. The PIV technique was used to obtain a time history of the instantaneous in-plane vorticity field from the moment of impulsive start, from which the spatial and temporal development of the flow was studied. Measurements of vortex strength and vortex position relative to the cylinders were obtained from these data. Three types of fluid behaviour were identified based on L/D: single bluff-body behaviour when the cylinders are in contact, constrained streamwise growth and lateral expansion of the gap recirculation zones at small and intermediate L/D, and independent formation of recirculation zones similar to a single impulsively started circular cylinder at larger L/D.  相似文献   

4.
The influence of a wake-mounted splitter plate on the flow around a surface-mounted circular cylinder of finite height was investigated experimentally using a low-speed wind tunnel. The experiments were conducted at a Reynolds number of Re=7.4×104 for cylinder aspect ratios of AR=9, 7, 5 and 3. The thickness of the boundary layer on the ground plane relative to the cylinder diameter was δ/D=1.5. The splitter plates were mounted on the wake centreline with negligible gap between the base of the cylinder and the leading edge of the plate. The lengths of the splitter plates, relative to the cylinder diameter, ranged from L/D=1 to 7, and the plate height was always equal to the cylinder height. Measurements of the mean drag force coefficient were obtained with a force balance, and measurements of the vortex shedding frequency were obtained with a single-component hot-wire probe situated in the wake of the cylinder–plate combination. Compared to the well-studied case involving an infinite circular cylinder, the splitter plate was found to be a less effective drag-reduction device for finite circular cylinders. Significant reduction in the mean drag coefficient was realized only for the finite circular cylinder of AR=9 with intermediate-length splitter plates of L/D=1–3. The mean drag coefficients of the other cylinders were almost unchanged. In terms of its effect on vortex shedding, a splitter plate of sufficient length was able to suppress Kármán vortex shedding for all of the finite circular cylinders tested. For AR=9, vortex shedding suppression occurred for L/D≥5, which is similar to the case of the infinite circular cylinder. For the smaller-aspect-ratio cylinders, however, the splitter plate was more effective than what occurs for the infinite circular cylinder: for AR=3, vortex shedding suppression occurred for all of the splitter plates tested (L/D≥1); for AR=5 and 7, vortex shedding suppression occurred for L/D≥1.5.  相似文献   

5.
The flow structure around the free-end region of two adjacent finite circular cylinders embedded in an atmospheric boundary layer (ABL) was investigated experimentally. The experiments were carried out in a closed-return-type subsonic wind tunnel, in which two finite cylinders with an aspect ratio of 6 were mounted vertically on a flat plate in a side-by-side arrangement. The Reynolds number based on the cylinder diameter was about Re=2×104. Systems with gap ratios (i.e., center-to-center distance/cylinder diameter) in the range 1.0–2.0 were investigated. A hot-wire anemometer was employed to measure the wake velocity, and the mean pressure distribution on the cylinder surface was also measured. The flow past two finite cylinders was found to have a complicated three-dimensional wake structure in the region near the free ends. As the gap ratio increases, regular vortex-shedding becomes dominant, but the length of the vortex formation region decreases. The pressure distribution and flow structure around two cylinders were found to differ substantially from the behavior of a two-dimensional circular cylinder due to mutual interference. The three-dimensional flow structure seems to originate from the strong entrainment of irrotational fluids caused by the downwash counter-rotating vortices separated from the finite cylinder (FC) free ends.  相似文献   

6.
An experimental investigation is presented for the cross-flow past a pair of staggered circular cylinders, with the upstream cylinder subject to forced harmonic oscillation transverse to the flow direction. Experiments were conducted in a water tunnel with Reynolds numbers, based on upstream velocity, U, and cylinder diameter, D, in the range 1440⩽Re⩽1680. The longitudinal separation between cylinder centres is L/D=2.0, with a transverse separation (for the mean position of the upstream cylinder) of T/D=0.17; the magnitude of the harmonic oscillation is 0.44D peak-to-peak and the nondimensional frequency range of the excitation is 0.05⩽feD/U⩽0.44. Flow visualization of the wake-formation region and hot-film measurements of the wake spectra are used to investigate the wake-formation process. An earlier study showed that stationary cylinders in this nearly in-line configuration straddle two very different flow regimes, the so-called shear-layer reattachment (SLR) and induced separation (IS) regimes. The present study, demonstrates that oscillation of the upstream cylinder causes considerable modification of the flow patterns around the cylinders. In particular, the wake experiences strong periodicities at the frequency of the oscillating cylinder; in addition to the usual fundamental lock-in, both sub- and superharmonic resonances are obtained. It is also observed that, although the flow exhibits regions of SLR and IS for excitation frequencies below the fundamental lock-in, for frequencies above the lock-in range the flow no longer resembles either of these flow regimes and vortices are formed in the gap between the cylinders.  相似文献   

7.
A dual-step cylinder is comprised of two cylinders of different diameters. A large diameter cylinder (D) with low aspect ratio (L/D) is attached to the mid-span of a small diameter cylinder (d). The present study investigates the effect of Reynolds number (ReD) and L/D on dual step cylinder wake development for D/d=2, 0.2≤L/D≤3, and two Reynolds numbers, ReD=1050 and 2100. Experiments have been performed in a water flume facility utilizing flow visualization, Laser Doppler Velocimetry (LDV), and Particle Image Velocimetry (PIV). The results show that vortex shedding occurs from both the large and small diameter cylinders for 1≤L/D≤3 at ReD=2100 and 2≤L/D≤3 at ReD=1050. At these conditions, large cylinder vortices predominantly form vortex loops in the wake and small cylinder vortices form half-loop vortex connections. At lower aspect ratios, vortex shedding from the large cylinder ceases, with the dominant frequency in the large cylinder wake attributed to the passage of vortex filaments connecting small cylinder vortices. At these lower aspect ratios, the presence of the large cylinder induces periodic vortex dislocations. Increasing L/D increases the frequency of occurrence of vortex dislocations and decreases the dominant frequency in the large cylinder wake. The identified changes in wake topology are related to substantial variations in the location of boundary layer separation on the large cylinder, and, consequently, changes in the size of the vortex formation region. The results also show that the Reynolds number has a substantial effect on wake vortex shedding frequency, which is more profound than that expected for a uniform cylinder.  相似文献   

8.
The effect of fins on vortex shedding and acoustic resonance is investigated for isolated and two tandem cylinders exposed to cross-flow in a rectangular duct. Three spacing ratios between the tandem cylinders (S/De=1.5, 2 and 3) are tested for a Reynolds number range from 1.6×104 to 1.1×105. Measurements of sound pressure as well as mean and fluctuating velocities are performed for bare and finned cylinders with three different fin densities. The effect of fins on the sound pressure generated before the onset of acoustic resonance as well as during the pre-coincidence and coincidence resonance is found to be rather complex and depends on the spacing ratio between cylinders, the fin density and the nature of the flow-sound interaction mechanism.For isolated cylinders, the fins reduce the strength of vortex shedding only slightly, but strongly attenuate the radiated sound before and during the occurrence of acoustic resonance. This suggests that the influence of the fins on correlation length is stronger than on velocity fluctuations. In contrast to isolated cylinders, the fins in the tandem cylinder case enhance the vortex shedding process at off-resonant conditions, except for the large spacing case which exhibits a reversed effect at high Reynolds numbers. Regarding the acoustic resonance of the tandem cylinders, the fins promote the onset of the coincidence resonance, but increasing the fin density drastically weakens the intensity of this resonance. The fins are also found to suppress the pre-coincidence resonance for the tandem cylinders with small spacing ratios (S/De=1.5, 2 and 2), but for the largest spacing case (S/De=3), they are found to have minor effects on the sound pressure and the lock-in range of the pre-coincidence resonance.  相似文献   

9.
The noise generated by two tandem cylinders in a cross-flow (i.e., with the second in the wake of the first) has been investigated. Measurements of turbulence and of fluctuating pressure have been obtained between the two cylinders for different flow velocities and incident levels of turbulence. Although, for a number of cases, up to four peaks related to vortex shedding were evident in the spectrum, most measurements exhibited two peaks, a dominant one at the vortex-shedding frequency, with a secondary peak at twice this value. The measurements show that vortex generated noise is strongest at the mid-point between the cylinders and at the rear cylinder with levels of 130 dB. The harmonic component was strongest at the downstream cylinder where peak values of 110 dB were obtained. The nonlinear flow/acoustic interactions are examined using bispectral analysis to identify the quadratic interactions in the parameters. A novel quadratic modelling method is proposed and shown to be capable of both identifying and quantifying the nonlinear interactions which give rise to noise at harmonics of the vortex-shedding frequency.  相似文献   

10.
This study focuses on the self-sustained oscillatory flow characteristics between two tandem circular cylinders of equal diameter placed in a uniform inflow. The Reynolds number (Re D ), based on the cylinder diameter, was around 1,000 and all experiments were performed in a recirculating water channel. The streamwise distance between two tandem cylinders ranged within 1.5 ≤ X c/D ≤ 7.0. Here X c denotes the center-to-center distance between two tandem cylinders. For all experiments studied herein, quantitative velocity measurements were performed using hot-film anemometer and the LDV system. The laser sheet technique was employed for qualitative flow visualization. The wavelet transform was applied to elucidate the temporal variation and phase difference between two spectral components of the velocity signals detected in the flow field. The remarkable finding was that when two tandem circular cylinders were spaced at a distance within 4.5 ≤ X c/D ≤ 5.5, two symmetrical unstable shear layers with a certain wavelength were observed to impinge onto the downstream cylinder. The responding frequency (f u ), measured between these two cylinders, was much higher than the natural shedding frequency behind a single isolated cylinder at the same Re D . This responding frequency decreased as the distance X c/D increased. Not until X c/D ≥ 6.0, did it recover to the natural shedding frequency behind a single isolated cylinder. Between two tandem cylinders, the Strouhal numbers (St c = f u X c/Uc) maintained a nearly constant value of 3, indicating the self-sustained oscillating flow characteristics with a wavelength X c/3. Here U c is the convection speed of the unstable shear layers between two tandem cylinders. At Re D = 1,000, the self-sustained oscillating characteristics between two tandem circular cylinders were proven to exhibit a sustained flow pattern, not just a sporadic phenomenon.  相似文献   

11.
Wind tunnel experiments were conducted to measure the vortex shedding frequencies for two circular cylinders of finite height arranged in a staggered configuration. The cylinders were mounted normal to a ground plane and were partially immersed in a flat-plate turbulent boundary layer. The Reynolds number based on the cylinder diameter was ReD=2.4×104, the cylinder aspect ratio was AR=9, the boundary layer thickness relative to the cylinder height was δ/H=0.4, the centre-to-centre pitch ratio was varied from P/D=1.125 to 5, and the incidence angle was incremented in small steps from α=0° to 90°. The Strouhal numbers were obtained behind the upstream and downstream cylinders using hot-wire anemometry. From the behaviour of the Strouhal number data obtained at the mid-height position, the staggered configuration could be broadly classified by the pitch ratio as closely spaced (P/D<1.5), moderately spaced (1.5?P/D?3), or widely spaced (P/D>3). The closely spaced staggered finite cylinders were characterized by the same Strouhal number measured behind both cylinders, an indication of single bluff-body behaviour. Moderately spaced staggered finite cylinders were characterized by two Strouhal numbers at most incidence angles. Widely spaced staggered cylinders were characterized by a single Strouhal number for both cylinders, indicative of synchronized vortex shedding from both cylinders at all incidence angles. For selected staggered configurations representative of closely spaced, moderately spaced, or widely spaced behaviour, Strouhal number measurements were also made along the vertical lengths of the cylinders, from the ground plane to the free end. The power spectra showed that for certain cylinder arrangements, because of the influences of the cylinder–wall junction and free-end flow fields, the Strouhal numbers and flow patterns change along the cylinder.  相似文献   

12.
This paper presents a detailed investigation of Strouhal numbers, forces and flow structures in the wake of two tandem cylinders of different diameters. While the downstream cylinder diameter, D, was fixed at 25 mm, the upstream cylinder diameter, d, was varied from 0.24D to D. The spacing between the cylinders was 5.5d, at which vortices were shed from both cylinders. Two distinct vortex frequencies were detected behind the downstream cylinder for the first time for two tandem cylinders of the same diameter. The two vortex frequencies remained for d/D=1.0–0.4. One was the same as detected in the gap of the cylinders, and the other was of relatively low frequency and was ascribed to vortex shedding from the downstream cylinder. While the former, if normalized, declined progressively from 0.196 to 0.173, the latter increased from 0.12 to 0.203 with decreasing d/D from 1 to 0.24. The flow structure around the two cylinders is examined in the context of the observed Strouhal numbers. The time-averaged drag on the downstream cylinder also climbed with decreasing d/D, though the fluctuating forces dropped because vortices impinging upon the downstream cylinder decreased in scale with decreasing d/D.  相似文献   

13.
杜晓庆  邱涛  赵燕 《力学学报》2019,51(6):1740-1751
为澄清串列双方柱流致振动的质量比效应, 采用数值模拟方法, 在雷诺数为150时, 研究了质量比($m^{\ast }=3$, 10, 20)对下游方柱振动响应特性的影响规律, 分析了下游方柱尾流模态的演变过程, 探讨了导致下游方柱振动的流固耦合机制. 结果表明: 质量比对下游方柱的流致振动有重要影响, 低质量比($m^{\ast }=3$)时下游方柱的振动响应更为复杂, 随着折减速度的增大, 下游方柱并未出现传统“锁定”现象(即振动频率比$f_{y}$/$f_{\rm n} \approx1$的锁定), 而发生了“弱锁定”现象(即$f_{y}/f_{\rm n}<1$的锁定); 随着质量比的增加($m^{\ast }=10$和20), “弱锁定”现象消失, 而出现传统“锁定”现象, 且下游方柱横流向最大振幅减小. 质量比对串列双方柱的柱心间距有明显影响, 低质量比($m^{\ast }=3$)时的柱间距在振动锁定区内会急剧减小, 而较高质量比($m^{\ast }=10$和20)下的柱间距则变化不大. 此外, 质量比对串列双方柱的尾流模态和流固耦合机制也有显著影响, 其中低质量比($m^{\ast }=3$)下的情况更为多样.   相似文献   

14.
The effect of free-stream turbulence on vortex-induced vibration of two side-by-side elastic cylinders in a cross-flow was investigated experimentally. A turbulence generation grid was used to generate turbulent incoming flow with turbulence intensity around 10%. Cylinder displacements in the transverse direction at cylinder mid-span were measured in the reduced velocity range 1.45<Ur0<12.08, corresponding to a range of Reynolds number (Re), based on the mean free-stream velocity and the diameter of the cylinder, between Re=5000–41 000. The focus of the study is on the regime of biased gap flow, where two cylinders with pitch ratio (T/D) varying from 1.17 to 1.90 are considered. Results show that the free-stream turbulence effect is to enhance the vortex-induced force, thus to restore the large-amplitude vibration associated with the lock-in resonance. However, the enhancement is significant at a different Strouhal number (St) for different pitch ratios. When the spacing between two cylinders is relatively small (1.17<T/D<1.50), the enhancement is significant at St≈0.1. When the spacing is increased, the Strouhal number at which the enhancement is significant shifts to St≈0.16. This enlarges the range of reduced velocity to be concerned. An energy analysis showed that free-stream turbulence feeds energy to the cylinder at multiple frequencies of vortex shedding. Therefore, the lock-in region is still of main concern when the approach flow is turbulent.  相似文献   

15.
Passive control of the wake behind a circular cylinder in uniform flow is studied by numerical simulation at ReD=80. Two small control cylinders are placed symmetrically along the separating shear layers at various stream locations. In the present study, the detailed flow mechanisms that lead to a significant reduction in the fluctuating lift but maintain the shedding vortex street are clearly revealed. When the stream locations lie within 0.8≤XC/D≤3.0, the alternate shedding vortex street remains behind the control cylinders. In this case, the symmetric standing eddies immediately behind the main cylinder and the downstream delay of the shedding vortex street are the two primary mechanisms that lead to a 70–80% reduction of the fluctuating lift on the main cylinder. Furthermore, the total drag of all the cylinders still has a maximum 5% reduction. This benefit is primarily attributed to the significant reduction of the pressure drag on the main cylinder. Within XC/D>3.0, the symmetry of the standing eddy breaks down and the staggered vortex street is similar to that behind a single cylinder at the same Reynolds number. In the latter case, the mean pressure drag and the fluctuating lift coefficients on the main cylinder will recover to the values of a single cylinder.  相似文献   

16.
Vortex induced vibrations of two equal-sized cylinders in tandem and staggered arrangement placed in uniform incompressible flow is studied. A stabilized finite element formulation is utilized to solve the governing equations. The Reynolds number for these 2D simulations is 1000. The cylinders are separated by 5.5 times the cylinder diameter in the streamwise direction. For the staggered arrangement, the cross-flow spacing between the two cylinders is 0.7 times the cylinder diameter. In this arrangement, the downstream cylinder lies in the wake of the upstream one and therefore experiences an unsteady inflow. The wake looses its temporal periodicity, beyond a few diameters downstream of the front cylinder. The upstream cylinder responds as an isolated single cylinder while the downstream one undergoes disorganized motion. Soft-lock-in is observed in almost all the cases.  相似文献   

17.
Flow development in the wake of a dual step cylinder has been investigated experimentally using Laser Doppler Velocimetry and flow visualization. The dual step cylinder model is comprised of a large diameter cylinder (D) mounted at the mid-span of a small diameter cylinder (d). The experiments have been performed for a Reynolds number (Re D ) of 1,050, a diameter ratio (D/d) of 2, and a range of large cylinder aspect ratios (L/D). The results show that the flow development is highly dependent on L/D. The following four distinct flow regimes can be identified based on vortex dynamics in the wake of the large cylinder: (1) for L/D ≥ 15, three vortex shedding cells form in the wake of the large cylinder, one central cell bounded by two cells of lower frequency, (2) for 8 < L/D ≤ 14, a single vortex shedding cell forms in the wake of the large cylinder, (3) for 2 < L/D ≤ 6, vortex shedding from the large cylinder is highly three-dimensional. When spanwise vortices are shed, they deform substantially and attain a hairpin shape in the near wake, (4) for 0.2 ≤ L/D ≤ 1, the large cylinder induces vortex dislocations between small cylinder vortices. The results show that for Regimes I to III, on the average, the frequency of vortex shedding in the large cylinder wake decreases with L/D, which is accompanied by a decrease in coherence of the shed vortices. In Regime IV, small cylinder vortices connect across the large cylinder wake, but these connections are interrupted by vortex dislocations. With decreasing L/D, the frequency of dislocations decreases and the dominant frequency in the large cylinder wake increases toward the small cylinder shedding frequency.  相似文献   

18.
This work aims to investigate how the presence of a downstream cylinder affects the passive scalar transport in a cylinder wake. The wake was generated by two tandem brass circular cylinders of the same diameter (d). The cylinder centre-to-centre spacing L/d was 1.3, 2.5 and 4.0, respectively, covering the three typical flow regimes of this flow. The upstream cylinder was slightly heated. Measurements were conducted at x/d= 10 and Re (≡ dU /ν, where U is the free-stream velocity and ν is the kinematic viscosity of fluid) = 7000. A three-wire probe consisting of an X-wire and a cold wire was used to measure the velocity and temperature fluctuations, while an X-wire provided a phase reference. The phase-averaged velocity vectors and vorticity display single vortex street behind the downstream cylinder, irrespective of the flow regimes. However, the detailed flow structure exhibits strong dependence on L/d in terms of the Strouhal number, the vortex strength and its downstream evolution. This naturally affects passive scalar transport. The coherent and incoherent heat flux vectors show significant variation for different L/d.  相似文献   

19.
The aeroacoustic response of two side-by-side circular cylinders in cross-flow is investigated experimentally. In order to investigate the effect of the gap between the cylinders on the acoustic resonance mechanism, six spacing ratios between the cylinders, in the range of T/D=1.25–3, have been investigated, where D is the diameter of the cylinders and T the centre-to-centre distance between them. Special attention is given to the intermediate spacing ratio range, which exhibits bistable flow regimes in the absence of resonance. During the tests, the acoustic cross-modes of the duct housing the cylinders are self-excited. For the intermediate spacing ratios, T/D=1.25, 1.35, 1.46 and 1.75, two distinct vortex-shedding frequencies at the off-resonance conditions are observed. These are associated with the wide and narrow wakes of the cylinders, as described in the literature. In this case, acoustic resonances occur at a Strouhal number, which is between those observed before the onset of resonance. The acoustic resonance synchronizes vortex shedding in the two wakes and thereby eliminates the bistable flow phenomenon. For large spacing ratios, T/D=2.5 and 3, vortex shedding occurs at a single Strouhal number at which the acoustic resonance is excited.  相似文献   

20.
The motions of a single and two lines of neutrally buoyant circular cylinders in fluid between flat parallel walls are numerically investigated over the range of the Reynolds number of 12 < Re < 96, the ratio of the diameter of the cylinder Ds to the channel width D of 0.25≤Ds/D≤0.5, and the ratio of the streamwise spacing of the cylinders L to the channel width of 0.75≤L/D≤2. The lattice Boltzmann method is used for computations of the fluid phase and the cylinders are moved according to Newton’s law of motion. The Segré–Silberberg effect is found for both a single and two lines of cylinders. It is also found that for two lines of cylinders with Ds/D=0.25 and L/D=1, the equilibrium positions of the two lines are arranged to be staggered with respect to each other in the flow direction. The effects of the Reynolds number Re, Ds/D, and L/D on the equilibrium position of the lines of cylinders and on the friction factor of the cylinder–fluid mixture are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号