首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
We employ a variety of highly-correlated approaches including quantum Monte Carlo (QMC) and the n-electron valence state perturbation theory (NEVPT2) to compute the vertical excitation energies of retinal protonated Schiff base (RPSB) models in the gas phase. We find that the NEVPT2 excitation energies are in good agreement with the QMC values and confirm our previous findings that the complete-active-space perturbation (CASPT2) approach yields accurate excitations for RPSB models only when the more recent zero-order IPEA Hamiltonian is employed. The excitations computed with the original zero-order formulation of CASPT2 are instead systematically red-shifted by more than 0.3 eV. We then focus on the full 11-cis retinal chromophore and show that the M06-2X and MP2 approaches provide reliable ground-state equilibrium structures for this system while the complete-active-space self-consistent field (CASSCF) geometry is characterized by significantly higher ground-state energies at the NEVPT2 and CASPT2 level. Our calibration of the structural model together with the general agreement of all highly-correlated excited-state methods allows us to reliably assign a value of about 2.3 eV to the vertical excitation of 11-cis RPSB in the gas-phase.  相似文献   

3.
The performance of multiconfigurational second-order perturbation techniques is established for the calculation of small magnetic couplings in heterobinuclear complexes. Whereas CASPT2 gives satisfactory results for relatively strong magnetic couplings, the method shows important deviations from the expected Heisenberg spectrum for couplings smaller than 15-20 cm(-1). The standard choice of the zeroth-order CASPT2 Hamiltonian is compared to alternative definitions published in the literature and the stability of the results is tested against increasing level shifts. Furthermore, we compare CASPT2 with an alternative implementation of multiconfigurational perturbation theory, namely NEVPT2 and with variational calculations based on the difference dedicated CI technique.  相似文献   

4.
A multireference second-order perturbation theory using a restricted active space self-consistent field wave function as reference (RASPT2/RASSCF) is described. This model is particularly effective for cases where a chemical system requires a balanced orbital active space that is too large to be addressed by the complete active space self-consistent field model with or without second-order perturbation theory (CASPT2 or CASSCF, respectively). Rather than permitting all possible electronic configurations of the electrons in the active space to appear in the reference wave function, certain orbitals are sequestered into two subspaces that permit a maximum number of occupations or holes, respectively, in any given configuration, thereby reducing the total number of possible configurations. Subsequent second-order perturbation theory captures additional dynamical correlation effects. Applications of the theory to the electronic structure of complexes involved in the activation of molecular oxygen by mono- and binuclear copper complexes are presented. In the mononuclear case, RASPT2 and CASPT2 provide very similar results. In the binuclear cases, however, only RASPT2 proves quantitatively useful, owing to the very large size of the necessary active space.  相似文献   

5.
Multiconfigurational quantum chemical methods (complete active space self-consistent field (CASSCF)/second-order perturbation theory (CASPT2)) have been used to study the agostic interaction between the metal atom and H(C) in the methylidene metal dihydride complexes H2MCH2, where M is a second row transition metal or the actinide atoms Th or U. The geometry of some of these complexes is highly irregular due to the formation of a three center bond CH...M, where the electrons in the CH bond are delocalized onto empty or half empty orbitals of d- or f-type on the metal. No agostic interaction is expected when M=Y, where only a single bond with methylene can be formed, or when M=Ru, because of the lack of empty electron accepting metal valence orbitals. The largest agostic interaction is found in the Zr and U complexes.  相似文献   

6.
The transition energies for the lowest energy pi --> pi* electronic excitations are calculated with the complete active space self-consistent field method (CASSCF) and with the complete active space second-order perturbation theory method (CASPT2) for the linear cyano-substituted polyacetylene cations, H-Cn-CN+, n = 4-11, and NC-Cn-CN+, n = 2-10. These systems are models for an important class of interstellar species. We demonstrate the utility of the theoretical calculations in assigning the experimental spectra.  相似文献   

7.
In this work, magnetometry and high-frequency and -field electron paramagnetic resonance spectroscopy (HFEPR) have been employed in order to determine the spin Hamiltonian (SH) parameters of the non-Kramers, S = 1, pseudooctahedral trans-[Ni(II){(OPPh(2))(EPPh(2))N}(2)(sol)(2)] (E = S, Se; sol = DMF, THF) complexes. X-ray crystallographic studies on these compounds revealed a highly anisotropic NiO(4)E(2) coordination environment, as well as subtle structural differences, owing to the nature of the Ni(II)-coordinated solvent molecule or ligand E atoms. The effects of these structural characteristics on the magnetic properties of the complexes were investigated. The accurately HFEPR-determined SH zero-field-splitting (zfs) D and E parameters, along with the structural data, provided the basis for a systematic density functional theory (DFT) and multiconfigurational ab initio computational analysis, aimed at further elucidating the electronic structure of the complexes. DFT methods yielded only qualitatively useful data. However, already entry level ab initio methods yielded good results for the investigated magnetic properties, provided that the property calculations are taken beyond a second-order treatment of the spin-orbit coupling (SOC) interaction. This was achieved by quasi-degenerate perturbation theory, in conjunction with state-averaged complete active space self-consistent-field calculations. The accuracy in the calculated D parameters improves upon recovering dynamic correlation with multiconfigurational ab initio methods, such as the second-order N-electron valence perturbation theory NEVPT2, the difference dedicated configuration interaction, and the spectroscopy-oriented configuration interaction. The calculations showed that the magnitude of D (~3-7 cm(-1)) in these complexes is mainly dominated by multiple SOC contributions, the origin of which was analyzed in detail. In addition, the observed largely rhombic regime (E/D = 0.16-0.33) is attributed to the highly distorted metal coordination sphere. Of special importance is the insight by this work on the zfs effects of Se coordination to Ni(II). Overall, a combined experimental and theoretical methodology is provided, as a means to probe the electronic structure of octahedral Ni(II) complexes.  相似文献   

8.
Equilibrium geometries of low-lying electronic states of cyanosilylene (HSiCN), isocyanosilylene (HSiNC), and their ions have been investigated using the complete active space self-consistent field (CASSCF) approach. The harmonic vibrational frequencies on the optimized geometries were calculated using the multiconfiguration linear response (MCLR) method. Taking the further correlation effects into account, the complete active space perturbation theory of second-order (CASPT2) was carried out for the energetic correction. The CASPT2 calculations have been performed to obtain the vertical excitation energies of selected low-lying excited states of HSiCN and HSiNC. Computed results show that the singlet-triplet splittings are calculated to be 0.99 and 1.30 eV for HSiCN and HSiNC, respectively. The vertical excitation energies of the lowest singlet and triplet excited states in HSiCN are lower than those in HSiNC. The first vertical ionization energy of HSiCN (10.04 eV) is higher than that of HSiNC (9.97 eV). The ground-state adiabatic electron affinities are found to be rather high, and the value of HSiCN (1.85 eV) higher than that of HSiNC (1.52 eV). The existences of dipole-bound excited negative ion states have been discovered within HSiCN and HSiNC.  相似文献   

9.
10.
In this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible we used the multireference configuration interaction (MRCI) method as a reference for various flavors of multireference perturbation theory to second order. In particular, we have benchmarked CASPT2, NEVPT2 and XMCQDPT2. For CASPT2, we have analyzed the single‐state, multistate (MS) and extended MS variants. In addition, we have assessed the effect of the ionization potential electron affinity (IPEA) shift. For NEVPT2, we have used the partially and the strongly contracted variants. Further, we have tested the commonly used RI‐CC2, RI‐ADC2 and EOM‐CCSD methods. Generally, we observe the following trends for singlet excited states: NEVPT2 is the closest MR method to MRCISD+Q, closely followed by CASPT2 with the default IPEA shift. The same trend is observed for triplet states, although NEVPT2 and CASPT2‐IPEA are getting closer. Interestingly, the n, π* singlet excited states were described more accurately than π, π* excited states, while for triplet states the trend is inverted except for NEVPT2. This work is an important benchmark for future photochemical investigations.  相似文献   

11.
12.
Completely ab initio global potential energy surfaces (PESs) for the singlet and triplet spin multiplicities of rigid O(2)((3)Σ(g)(-))+O(2)((3)Σ(g)(-)) are reported for the first time. They have been obtained by combining an accurate restricted coupled cluster theory with singles, doubles, and perturbative triple excitations [RCCSD(T)] quintet potential [Bartolomei et al., J. Chem. Phys. 128, 214304 (2008)] with complete active space second order perturbation theory (CASPT2) or, alternatively, multireference configuration interaction (MRCI) calculations of the singlet-quintet and triplet-quintet splittings. Spherical harmonic expansions, containing a large number of terms due to the high anisotropy of the interaction, have been built from the ab initio data. The radial coefficients of these expansions are matched at long range distances with analytical functions based on recent ab initio calculations of the electric properties of the monomers [M. Bartolomei, E. Carmona-Novillo, M. I. Hernández, J. Campos-Martínez, and R. Hernández-Lamoneda, J. Comput. Chem. (2010) (in press)]. The singlet and triplet PESs obtained from either RCCSD(T)-CASPT2 or RCCSD(T)-MRCI calculations are quite similar, although quantitative differences appear in specific terms of the expansion. CASPT2 calculations are the ones giving rise to larger splittings and more attractive interactions, particularly in the region of the absolute minima (in the rectangular D(2h) geometry). The new singlet, triplet, and quintet PESs are tested against second virial coefficient B(T) data and, their spherically averaged components, against integral cross sections measured with rotationally hot effusive beams. Both types of multiconfigurational approaches provide quite similar results, which, in turn, are in good agreement with the measurements. It is found that discrepancies with the experiments could be removed if the PESs were slightly more attractive. In this regard, the most attractive RCCSD(T)-CASPT2 PESs perform slightly better than the RCCSD(T)-MRCI counterpart.  相似文献   

13.
In this paper, ab initio calculations of the iron-sulfur protein model complexes have been completed on Fe_2S_2(SH)_2~(n-) and Fe_4S_4(SH)_4~(n-)(n=2, 3). The results indicate that the occupied terminal sulfur characteristic orbitals are found in the front orbital site and the energy levels of the occupied Fe 3d-like orbitals appear internally below the S-H bonding orbitals in the valence band. Although the energy sequence is different from what was reported in literature, our results are in agreement with the relevant experimental facts. We have discussed the reason that variations of the active sites are produced by various oxidation levels. The action mechanism of the Fe-S proteins as electron carriers in the biological processes is also explored preliminarily.  相似文献   

14.
Trigonal-planar, middle transition metal diiminato-imido complexes do not exhibit high-spin states, as might be naively expected on the basis of their low coordination numbers. Instead, the known Fe(III), Co(III), and Ni(III) complexes exhibit S = 3/2, S = 0, and S = 1/2 ground states, respectively. Kohn-Sham DFT calculations have provided a basic molecular orbital picture of these compounds as well as a qualitative rationale for the observed spin states. Reported herein are ab initio multiconfiguration second-order perturbation theory (CASPT2) calculations, which provide a relatively detailed picture of the d-d excited-state manifolds of these complexes. Thus, for a C(2v) Fe(III)(diiminato)(NPh) model complex, two near-degenerate states ((4)B(2) and (4)B(1)) compete as contenders for the ground state. Moreover, the high-spin sextet, two additional quartets and even a low-spin doublet all occur at <0.5 eV, relative to the ground state. For the Co(III) system, although CASPT2 reproduces an S = 0 ground state, as observed experimentally for a related complex, the calculations also predict two exceedingly low-energy triplet states; there are, however, no other particularly low-energy d-d excited states. In contrast to the Fe(III) and Co(III) cases, the Ni(III) complex has a clearly nondegenerate (2)B(2) ground state. The CASPT2 energetics provide benchmarks against which we can evaluate the performance of several common DFT methods. Although none of the functionals examined perform entirely satisfactorily, the B3LYP hybrid functional provides the best overall spin-state energetics.  相似文献   

15.
Electronic states of the C6H5F+ ion have been studied within C2v symmetry by using the complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) methods in conjunction with an atomic natural orbital basis. Vertical excitation energies (Tv) and relative energies (Tv') at the ground-state geometry of the C6H5F molecule were calculated for 12 states. For the five lowest-lying states, 1(2)B1, 1(2)A2, 2(2)B1, 1(2)B2, and 1(2)A1, geometries and vibrational frequencies were calculated at the CASSCF level, and adiabatic excitation energies (T0) and potential energy curves (PEC) for F-loss dissociations were calculated at the CASPT2//CASSCF level. On the basis of the CASPT2 T0 calculations, we assign the X, A, B, C, and D states of the ion to 1(2)B1, 1(2)A2, 2(2)B1, 1(2)B2, and 1(2)A1, respectively, which supports the suggested assignment of the B state to (2)(2)B1 by Anand et al. based on their experiments. Our CASPT2 Tv and Tv' calculations and our MRCI T0, Tv, and Tv' calculations all indicate that the 2(2)B1 state of C6H5F+ lies below 1(2)B2. By checking the relative energies of the asymptote products and checking the fragmental geometries and the charge and spin density populations in the asymptote products along the CASPT2//CASSCF PECs, we conclude that the 1(2)B1, 1(2)B2, and 1(2)A1 states of C6H5F+ correlate with C6H5+ (1(1)A1) + F (2P) (the first dissociation limit). The energy increases monotonically along the 1(2)B1 PEC, and there are barriers and minima along the 1(2)B2 and 1(2)A1 PECs. The predicted appearance potential value for C6H5+ (1(1)A1) is very close to the average of the experimental values. Our CASPT2//CASSCF PEC calculations have led to the conclusion that the 1(2)A2 state of C6H5F+ correlates with the third dissociation limit of C6H5+ (1(1)A2) + F (2P), and a preliminary discussion is presented.  相似文献   

16.
Two lowest-lying excited singlets with B(u) symmetry of all-trans-oligoenes, the well-known ionic 1(1)B(u)(+) state as well as the "hidden" ionic-covalent-mixed 1(1)B(u)(-) state, are calculated within both the Pariser-Parr-Pople (PPP) model at full configuration interaction (FCI) level and ab initio methods. The vertical excitation energies as well as wavefunctions from PPP-FCI calculations are found to be in good agreement with those from high-level multi-reference methods, such as multi-reference complete active space self-consistent field (CASSCF) with second order perturbative corrections (CASPT2), multi-reference M?ller-Plesset perturbation theory (MRMP), and complete active space valence bond theory (CASVB). The oscillator strengths from PPP calculation are in good agreement with spectroscopy experiments. The relatively small oscillator strength of 1(1)B(u)(-) is due to the approximate electron-hole symmetry of this state. In addition, the bond lengths in both states are found to show remarkable relativity with the bond orders calculated with ground state geometries, which suggests a possible strategy for initial guess in geometry optimization of excited states.  相似文献   

17.
18.
A comparison of density functionals is made for the calculation of energy and geometry differences for the high- [(5)T(2g): (t(2g))(4)(e(g))(2)] and low- [(1)A(1g): (t(2g))(6)(e(g))(0)] spin states of the hexaquoferrous cation [Fe(H(2)O)(6)](2+). Since very little experimental results are available (except for crystal structures involving the cation in its high-spin state), the primary comparison is with our own complete active-space self-consistent field (CASSCF), second-order perturbation theory-corrected complete active-space self-consistent field (CASPT2), and spectroscopy-oriented configuration interaction (SORCI) calculations. We find that generalized gradient approximations (GGAs) and the B3LYP hybrid functional provide geometries in good agreement with experiment and with our CASSCF calculations provided sufficiently extended basis sets are used (i.e., polarization functions on the iron and polarization and diffuse functions on the water molecules). In contrast, CASPT2 calculations of the low-spin-high-spin energy difference DeltaE(LH)=E(LS)-E(HS) appear to be significantly overestimated due to basis set limitations in the sense that the energy difference of the atomic asymptotes ((5)D-->(1)I excitation of Fe(2+)) are overestimated by about 3000 cm(-1). An empirical shift of the molecular DeltaE(LH) based upon atomic calculations provides a best estimate of 12 000-13 000 cm(-1). Our unshifted SORCI result is 13 300 cm(-1), consistent with previous comparisons between SORCI and experimental excitation energies which suggest that no such empirical shift is needed in conjunction with this method. In contrast, after estimation of incomplete basis set effects, GGAs with one exception underestimate this value by 3000-4000 cm(-1) while the B3LYP functional underestimates it by only about 1000 cm(-1). The exception is the GGA functional RPBE which appears to perform as well as or better than the B3LYP functional for the properties studied here. In order to obtain a best estimate of the molecular DeltaE(LH) within the context of density functional theory (DFT) calculations we have also performed atomic excitation energy calculations using the multiplet sum method. These atomic DFT calculations suggest that no empirical correction is needed for the DFT calculations.  相似文献   

19.
Calculations using the complete active space self-consistent field (CASSCF) and complete active space second-order perturbation (CASPT2) methods, and the multistate formulation of CASPT2 (MS-CASPT2), are performed for the ground and excited states of radical anions consisting of two pi-stacked nucleobases. The electronic couplings for excess electron transfer (EET) in the pi-stacks are estimated by using the generalized Mulliken-Hush approach. We compare results obtained within the different methods with data derived using Koopmans' theorem approximation at the Hartree-Fock level. The results suggest that although the one-electron scheme cannot be applied to calculate electron affinities of nucleobases, it provides reasonable estimates for EET energies. The electronic couplings calculated with KTA lie between the CASPT2 and the MS-CASPT2 based values in almost all cases.  相似文献   

20.
正确的能级次序应与分子的活性位置一致.实验证实,铁硫蛋白或模型化合物Fe_2S_2(SR)~(2-)及Fe_4S_4(SR)_4~(2-)的活性位置在端基,易于发生多种取代反应,而Fe_2S_2和Fe_4S_4实一般是稳定的.但是,经过电化学还原生成的Fe_2S_2(SR)_4~(3-),却不可逆地二聚化,生成Fe_4S_4(SR)_4~(2-)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号