首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A study was undertaken to determined if a suitable biosorbent could be found for removal of nickel at low concentrations (< 20 parts per million [ppm]) from a chemically complex wastewater effluent generated by electroplating operations. Algae and cyanobacteria were chosen as candidate biosorbent materials because they are easy to grow and they have the ability to withstand processing into biosorbent materials. Several species were screened for nickel-biosorption capacity initially, and three species of cyanobacteria were selected for further study based on their performance in the scoping tests. When compared to live controls, autoclaving improved the binding capacities of all three species, but usually biosorption data from experiments with live cells were more consistent. None of the three species was able to bind nickel efficiently in actual effluent samples. Further experimentation indicated that sodium ions, which were present in high concentrations in the effluent, were interfering with the ability of the cells to bind nickel. Adsorption isotherm plots for biosorption of nickel by two species ofAnabaena in NiCl2-deionized water solutions were prepared. Managed by Martin Marietta Energy Systems, Inc., for the US Department of Energy under contract No. DEAC05-84OR21400.  相似文献   

2.
The use of membrane processes for the recovery of fermentation products has been gaining increased acceptance in recent years. Pervaporation has been studied in the past as a process for simultaneous fermentation and recovery of volatile products such as ethanol and butanol. However, membrane fouling and low permeate fluxes have imposed limitations on the effectiveness of the process. In this study, we characterize the performance of a substituted polyacetylene membrane, poly[(l-trimethylsilyl)-l-propyne] (PTMSP), in the recovery of ethanol from aqueous mixtures and fermentation broths. Pervaporation using PTMSP membranes shows a distinct advantage over conventional poly(dimethyl siloxane) (PDMS) membranes in ethanol removal. The flux with PTMSP is about threefold higher and the concentration factor is about twofold higher than the corresponding performance achieved with PDMS under similar conditions. The performance of PTMSP with fermentation broths shows a reduction in both flux and concentration factor relative to ethanol-water mixtures. However, the PTMSP membranes indicate initial promise of increased fouling resistance in operation with cell-containing fermentation broths.  相似文献   

3.
Simultaneous saccharification and fermentation (SSF) processes for producing ethanol from lignocellulose are capable of improved hydrolysis rates, yields, and product concentrations compared to separate hydrolysis and fermentation (SHF) systems, because the continuous removal of the sugars by the yeasts reduces the end-product inhibition of the enzyme complex. Recent experiments using Genencor 150L cellulase and mixed yeast cultures have produced yields and concentrations of ethanol from cellulose of 80% and 4.5%, respectively. The mixed culture was employed because B.clausenii has the ability to ferment cellobiose (further reducing end-product inhibition), while the brewing yeastS. cerevisiae provides a robust ability to ferment the monomeric sugars. These experimental results are combined with a process model to evaluate the economics of the process and to investigate the effect of alternative processes, conditions, and organisms.  相似文献   

4.
This article presents the advanced technology that has been developed by BioEnergy International of Gainesville, Florida, utilizing novel recombinant strains of bacteria developed by Lonnie Ingram of the University of Florida. The first commercial applications of these unique fermenting organisms convert 5-carbon sugars, as well as 6-carbon sugars, and oligomers of cellulose (e.g., cellobiose and cellotriose) directly to ethanol. The proposed systems that will be utilized for conversion of agricultural wastes, mixed waste papers, and pulp and paper mill waste in forthcoming commercial installations are now under design. This involves the extensive experience of Raphael Katzen Associates International, Inc. in acid hydrolysis, enzyme production, enzymatic hydrolysis, large-scale fermentation engineering, and distillation/dehydration. Specific examples of this advanced technology will be presented in different applications, namely:
1.  Conversion of the hemicellulose content of sugar cane bagasse to 5-carbon sugars by mild-acid prehydrolysis, followed by fermentation of the 5-carbon sugar extract with recombinantEscherichia coli in a commercial installation soon to be under construction in Brazil. This unique process utilizes the surplus hemicellulose fraction of bagasse not required for steam and power generation to produce ethanol, additional to that from the original cane juice, which has been converted by conventional sucrose fermentation to ethanol. The process also recovers and converts to ethanol the majority of sucrose normally lost with the bagasse fibers. Resultant beer is enriched in an innovative process to eliminate the need for incremental rectification capacity.
2.  Application of this technology to mixed waste paper in Florida, with a moderate loading of newsprint (85% mechanical wood fiber), will involve a mild-acid prehydrolysis, the partial extraction of the 5-carbon sugars produced from hemicellulose as a feedstock for propagation of the recombinantKlebsiella oxytoca bacterium. Included is a facility providing for in-house production of cellulase enzyme, as an active whole broth for direct use in simultaneous saccharification and fermentation (SSF) of the remaining cellulose and residual 5-carbon sugars to ethanol. This is followed by distillation and dehydration in the advanced commercially available low-energy recovery system.
3.  Another potential application of this unique technology involves utilization of a variety of wastes from several pulp and paper mills in close proximity, permitting collection of these wastes at low cost and reducing the considerable cost encountered in disposing of such low-energy wet waste. Based on pilot plant experiences with converting such waste by simultaneous enzymatic hydrolysis and fermentation, the same techniques will be applied as in the second case, with use of acid prehydrolysis only if the hemicellulose-derived sugars can be economically recovered. If not, acid hydrolysis will be eliminated and only the simultaneous saccharification and fermentation will be carried out, utilizing in-house-produced enzyme broth and recombinantKlebsiella oxytoca.
  相似文献   

5.
Urease has been purified from the seeds of Cajanus Cajan. The purification process involves three solvent extraction steps followed by DEAE-cellulose column chromatography. The specific activity of the purified enzyme is found to be 1920 U/mg with the recovery of 8%. The application of the purified enzyme in a biosensor construction is discussed.  相似文献   

6.
C-peptide radioimmunoassay (C-peptide RIA) is widely used in determination of pancreatic B-cell secretion activity.125I labeled TyrC-peptide is indispensable in C-peptide RIA kit. Herein we discuss a way of obtaining recombinant Tyr-C-peptide. Arg32Tyr human proinsulin mutant (R32Y-proinsulin) gene was constructed by site-directed mutagenesis and overexpressed inEscherichia coli. Purified R32Y-proinsulin was converted to insulin and Tyr-C-peptide by trypsin and carboxypeptidase B codigestion. Tyr-C-peptide was isolated through reverse-phase HPLC (RP-HPLC) and identified by C-peptide RIA and amino acid analysis.  相似文献   

7.
Two additional electrophoretically distinct molecular forms, isoforms (iso) 2 and 3, with lectin properties were isolated fromCratylia mollis Mart, seeds (FABACEAE), by extraction with 0.15M NaCl and ammonium sulfate fractionation, followed by chromatography on Sephadex G-75 and Bio-Gel P-200 (iso 2), as well as CM-Cellulose and Sephadex G-75 (iso 3). Both isoforms were human group nonspecific and showed distinct specificity. Polyacrylamide gel electrophoresis resolved iso 2 and 3 in polypeptides of apparent mol wts 60 and 31 kDa, respectively; a distinct isoelectric focusing pattern was obtained for iso 2 and 3, under denaturing and reducing conditions.  相似文献   

8.
Recently, several microorganisms have been shown to be capable of directly solubilizing low-rank coals. This bioextract has a high molecular weight and is water soluble, but is not useful as a liquid fuel. This paper presents the results of studies to biologically solubilize coal and convert the solubilized coal into more useful compounds. Preliminary experiments have been conducted to isolate cultures for the serial biological conversion of coal into liquid fuels. Coal particles have been solubilized employing an isolate from the surface of Arkansas lignite. Natural inocula, such as sheep rumen and sewage sludge, are then employed in developing cultures for converting the bioextract into fuels. This paper presents preliminary results of experiments in coal solubilization and bioextract conversion.  相似文献   

9.
10.
A 1,4-β-d-glucan cellobiohydrolase (EC 3.2.1.91) and l,4-β-d-glucan glucanohydrolase (EC 3.2.1.4) were purified from the culture filtrates ofPenicillium funiculosum by using preparative isoelectric focusing. Both the enzymes were homogeneous on polyacrylamide gel with and without sodium dodecyl sulphate. The mol wt of the cellobiohydrolase and endoglucanase were 14,400 and 25,000 respectively. The purified enzymes were free of β-glucosidase activity. Acting in isolation, the cellobiohydrolase had little capacity for solubilizing Avicel or Walseth cellulose, but showed increased rates of hydrolysis when combined with endoglucanase. Cellobiose inhibition (50%) was observed in the initial rate of the hydrolysis of Walseth cellulose. It was also observed that cellobiohydrolase initiates the attack on crystalline cellulose. † NCL communication no. 3898.  相似文献   

11.
Client-funded bench-scale investigations concerning the likelihood of successfully applying biological remediation to hazardous wastes must be cost-effective, and they usually need only determine if biodegradation is likely to occur on site. To assess the potential for stimulating biodegradation, biochemical oxygen demand (BOD) was used to continuously monitor bacterial respiration during growth on mixed organic wastes from contaminated water and soil. Continuously collected oxygen-consumption data provided information on the overall metabolic activity of the resident bacterial population and permitted direct observation of the cessation of microbial respiratory activity and, thus, the termination of aerobic degradation. The correlation of biological oxygen utilization with biodegradation was confirmed using independent analytical methods. Continuous, long-term BOD analysis was applied to bench-scale studies to assess the biodegradation of mixed organic wastes from contaminated sites and industrial waste effluents. This information was used to make an initial determination regarding the need to further explore bioremediation as a potential remedial-action technology using on-site, pilot-scale testing.  相似文献   

12.
Four isoforms of the extracellular lignin peroxidase of the ligninolytic actinomyceteStreptomyces viridosporus T7A (ALip-P1, P2, P3, and P4) were individually purified by ultrafiltration and ammonium sulfate precipitation, followed by electro-elution using polyacrylamide gel electrophoresis. Three of the purified peroxidases were compared for their immunologic relatedness by Western blot analysis using a polyclonal antibody preparation produced in rabbits against pure isoform P3. The anti-P3 antibody was also tested for its reactivity towards a lignin peroxidase from the white-rot fungusPhanerochaete chrysosporium and another ligninolytic actinomyceteStreptomyces badius 252. Results showed that peroxidases ALip-P1 through ALip-P3 are immunologically related to one another. The peroxidases ofS. badius, but not the peroxidase ofP. chrysosporium, also reacted with the antibody, thus indicating that the lignin peroxidases ofS. viridosporus andS. badius are immunologically related. Based upon its specific affinity, lignin peroxidase isoform ALip-P3 ofS. viridosporus was readily purified using an anti-P3 antibody affinity column.  相似文献   

13.
A potent indigenous bacillus isolate identified asBacillus cereus (RJ-30) was found to produce Cyclodextrin Glucosyl Transferase (CGTase) extracellularly. Process optimization of various fermentation parameters has been established for optimal growth of bacillus and the maximum enzyme synthesis. The organism had the highest specific growth rate (0.7μ) with a generation time of 1 h in glucose containing medium at the conditions of pH 7.0, 37°C at 300 rpm, 1.5 vvm of agitation, and aeration. At these conditions, it exhibited the maximum activity of 54 U/mL at the synthesis rate of 2.7 U/L/h. CGTase was produced from the early exponential growth and peaked during the midsporulating stage of about 16 h thereafter maintained at the same level of 50 U/mL. Saccharides containing media were better inducers than starch, and the influence of carbohydrate substrates has shown that enzyme synthesis is promoted by xylose (65 U/mL) and, more remarkably, by the supplementation of wheat bran extract in glucose medium (106 U/mL). This organism produced CGTase stably in a chemostat culturing over a period of 400 h with a maximum productivity of 5.4 kU/L/h (threefold higher than obtained in batch culturing [1.75 kU/L/h]). Comparatively, CGTase was produced by immobilized cells in a continuous fluidized bed reactor for over approx 360 h, at a relatively high dilution rate of 0.88 h−1 resulting in the productivity of 23.0 kU/L/h.  相似文献   

14.
Microalgae are unique photosynthetic organisms that are known to accumulate storage lipids in large quantitites and thrive in saline waters. Before these storage lipids can be used, they must be extracted from the microalgae and converted into usable fuel. Transesterification of lipids produces fatty acid methyl esters that can be used as a diesel fuel substitute. Three solvents, 1-butanol, ethanol, and hexane/2-propanol, were evaluated for extraction efficiency of microalgal lipids. Type of catalyst, concentration of catalyst, time of reaction, temperature of reaction, and quality of lipid were examined as variables for transesterification. The most efficient solvent of the three for extraction was 1-butanol (90% efficiency), followed by hexane/2-propanol and ethanol. Optimal yield of fatty acid methyl esters was obtained using 0.6N hydrochloric acid in methanol for 0.1 h at 70°C.  相似文献   

15.
The use of partially hydrated porous silica particles has been studied as a support for cofactor-dependent enzymatic catalysis in organic solvents. At an optimal pore hydration corresponding to 70% pore volume, horse liver alcohol dehydrogenase catalyzes the oxidation and reduction of alcohols and aldehydes, respectively, with rates sixfold higher than with nonporous glass beads as the enzymatic support and with cofactor recycling numbers in excess of 105. Thus, supported aqueous-phase enzymatic catalysis makes highly effective use of the enzyme and cofactor by coimmobilization and by providing a high interfacial area for reactions in organic media.  相似文献   

16.
Lamb pregastric lipase was purified from a commercial source using delipidation, solubilization with KSCN, acid-precipitation, pepsin-digestion, affinity chromatography with agarose-Cibacron Blue F3GA, gel filtration, and elution from a native 10% (w/v) polyacrylamide gel. The enzyme had a single subunit of 68,000 Da with maximum esterase activity when measured at pH 6.0 and 30 degrees C. The enzyme preferentially hydrolyzed short- and medium-chain (C4, C6, and C8) synthetic esters and short-chain (C4 and C6) monoacid triglycerides. The NH2-terminal sequence demonstrated high homology with gastric and lingual lipases.  相似文献   

17.
A series of bifunctional chemical modification reagents, presenting variations in both the chemistry of the functional groups and in the length of the spacer between the two reactive groups, have been evaluated as agents for enhancing the thermal stability of purifiedAspergillus niger amyloglucosidase by means of intramolecular cross-linking. Several chemical modifiers (e.g., diimidoesters) were identified that more than double the half-life of this industrially important enzyme during incubation at 65°C in the absence of substrate. The increased stability of the modified enzymes has been correlated with changes in the fluorescence-monitored thermal denaturation curves of the modified enzymes, relative to that of the native enzyme.  相似文献   

18.
Alkalophylic bacilli that produce cyclodextringlycosyltransferase (CGTase) were isolated from Brazilian soil, with a scheme of two plating steps. In the first step, the bacterial isolate forms a halo in the cultivation medium that contains γ-cyclodextrin (CD) complexing dyes. The CGTase of an isolate was purified 157-fold by biospecific affinity chromatography, with β-CD showing a mol wt of 77,580 Daltons. It produces a γ- to β-CD ratio of 0.156 and a small amount of α-CD, using maltodextrin 10% as substrate, at 50°C, pH 8.0 and 22 h reaction time, reaching 21.4% conversion of the substrate to cyclodextrins. In the second screening step, the isolates chosen give larger halos with β-CD complexing dyes, and smaller halos with β-CD complexing dyes, leading to a 30% improvement in γ-CD selectivity, although at lower total yield for cyclodextrins (11.5%).  相似文献   

19.
The egg shell membrane (ESM) is an intricate lattice network of stable and water-insoluble fibers with high surface area. ESM accumulates and eliminates various heavy metal ions from dilute aqueous solution with high affinity and in short contact time, depending on pH and characteristics of the individual ion. Under certain conditions, the level of precious ions, Au, Pt, and Pd accumulation approaches 55, 25, and 22% of dry wt of ESM, respectively. Also uranium uptake 30% of that of ESM. Experiments suggested that ESM is promising to use for the purpose of removal/recovery of metals and water pollution control.  相似文献   

20.
The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this work, Argonne researchers have developed a process to convert starchy feedstocks into L-lactic acid. The processing steps include starch recovery, continuous liquefaction, and simultaneous saccharification and fermentation. Over 100 g/L of lactic acid was produced in less than 48 h. The optical purity of the product was greater than 95%. This process has potential economical advantages over the conventional process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号