首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel rod-shaped calcite crystals are formed by precipitation from cetyltrimethylammonium bromide (CTAB)/1-pentanol/cyclohexane microemulsions containing calcium chloride and ammonium carbonate. The calcium carbonate initially precipitates as hexagon-shaped vaterite crystals. The vaterite crystals transform to unusual rod-shaped calcite crystals over several days. The rod-shaped calcite crystals are prismatic, with the longest crystal axis displaying (110) crystal faces. A possible mechanism of crystal growth is discussed. The elongated shape of the crystals facilitates the assembly into hierarchical structures and can allow the crystals to be used as templates for fabricating advanced materials.  相似文献   

2.
The modification of CaCO(3) crystal growth by synthetic L-Ser(PO(3)H(2)) and L-Thr(PO(3)H(2)) containing polypeptides is described. The amino acids Gly, L-Glu, L-Asp, L-Ser, L-Ala, and L-Lys induced rhombohedral calcite with a rough surface. Dipeptides, Xaa-L-Ser(PO(3)H(2)) (Xaa = Gly, L-Glu, L-Asp, L-Ser, L-Ala and L-Lys) induced vaterite crystals in the lower [Ca(2+)]. On the other hand, L-Ser(PO(3)H(2))-containing polypeptides formed spherical vaterite and fibrous calcite. The characteristic helical calcite was found in the presence of copoly[L-Ser(PO(3)H(2))(75)L-Asp(25)] or poly[L-Ser(PO(3)H(2))(3)-L-Asp]. Fibrous calcite, spherical vaterite, and helical calcite crystals were subjected to XRD and EDX analysis. XRD revealed the specific faces of these crystals. EDX spectra and surface analysis visualized the localization of the polypeptides and CaCO(3) components. Together with TEM and SAED data, we propose hypothetical growth mechanisms for the fibrous and helical calcite crystals.  相似文献   

3.
Calcium carbonate was precipitated from calcium hydroxide and carbonic acid solutions at 25 degrees C, with and without addition of different magnesium (MgSO(4), Mg(NO(3))(2) and MgCl(2)) and sodium salts (Na(2)SO(4), NaNO(3) and NaCl) of identical anions, in order to study the mode of incorporation of magnesium and inorganic anions and their effect on the morphology of calcite crystals over a range of initial reactant concentrations and limited c(i)(Mg(2+))/c(i)(Ca(2+)) molar ratios. The morphology, crystal size distribution, composition, structure, and specific surface area of the precipitated crystals, as well as the mode of cation and anion incorporation into the calcite crystal lattice, were studied by a combination of optical and scanning electron microscopy (SEM), electronic counting, a multiple BET method, thermogravimetry, FT-IR spectroscopy, X-ray diffraction (XRD), and electron paramagnetic resonance (EPR) spectroscopy. In the systems of high initial relative supersaturation, precipitation of an amorphous precursor phase preceded the formation of calcite, whereas in those of lower supersaturation calcite was the first and only polymorphic modification of calcium carbonate that appeared in the system. The magnesium content in calcite increased with the magnesium concentration in solution and was correlated with the type of magnesium salt used. Mg incorporation caused the formation of crystals elongated along the calcite c axis and, in some cases, the appearance of new [011] faces. Polycrystalline aggregates were formed when the c(i)(Mg(2+))/c(i)(Ca(2+)) molar ratios in solution were increased. Addition of sulfate ions, alone, caused formation of spherical calcite polycrystalline aggregates.  相似文献   

4.
The effects of sulfate and BHTPMP (Bis (hexamethylene) triaminepentakis (methylene phosphonic acid)) on the crystallization rate, phase composition and morphology of calcium carbonate have been studied. It was observed that sulfate reduces the nucleation rate and favors the formation of aragonite form in the calcium carbonate precipitate. Moreover, in the presence of sulfate the rhombohedral morphology of the calcite crystals is modified, and during the formation of calcite, the development of {104} faces are more significantly prohibited than {110} faces. In the presence of sulfate together with BHTPMP, the crystallization process is inhibited and the modified morphology and the dominant calcite form are observed in the solid. The results from molecular dynamics simulations show the more strong combination of sulfate with calcite surface, in particular the {104} face, in comparison with the aragonite surface. The strong interaction of BHTPMP with sulfate and the aragonite surface favors the formation of the dominant calcite phase in the precipitate.  相似文献   

5.
Hydrates of tetraphenylphosphonium carboxylates were synthesized by the reaction of equimolar amounts of pentaphenylphosphorus with 2-methoxybenzoic, 2-nitrobenzoic, and maleic acids in benzene. The product of the pentaphenylphosphorus reaction with tetrafluorophthalic acid (mole ratio 2: 1) is bis- (tetraphenylphosphonium) tetrafluorophthalate hydrate. According to the X-ray analysis data, crystals of tetraphenylphosphonim carboxylates are formed by tetraphenylphosphonim tetrahedral cations and single- or double-charged carboxylate anions. Structural organization of the crystals is determined by C–H···O weak hydrogen bonds formed with the participation of carboxylate groups and water molecules or manifold C–H···F interactions between cations and anions.  相似文献   

6.
Silver carboxylates can be made by the reaction of silver nitrate and the corresponding sodium carboxylates. The length of the alkyl chain has a significant impact on the product behavior. In this study, 18, 20, and 22 carbon chains (stearate, arachidate, and behenate, respectively) have been selected. All three sodium carboxylates are very insoluble in water at room temperature. Solutions are obtained above the Krafft temperature, which precipitates lamellar crystals if cooled at the proper cooling rate. Depending on the chain length, metastable morphologies, such as vesicles and tiny fibers, can be seen consecutively before hexagonal plates form. The carboxylate with the shorter chain length reaches equilibrium more quickly. All three silver carboxylates also take on a lamellar structure. Small-angle X-ray scattering (SAXS) shows that the d spacing of the crystals increases as the chain length increases. Cryo-TEM illustrates that the crystallites are the result of micelle nucleation and micelle aggregation. In addition, the crystallization process in the presence of silver bromide nanocrystals has been investigated. In the initial stage, an epitaxial interface is formed between the silver carboxylate crystallites and the cubic silver bromide grains. Budlike and strandlike structures grow because of it. The consequent strand enclosure restrains the crystal growth, which reduces the size and changes the morphology of the crystals.  相似文献   

7.
As crystallization processes are often rapid, it can be difficult to monitor their growth mechanisms. In this study, we made use of the fact that crystallization proceeds more slowly in small volumes than in bulk solution to investigate the effects of the soluble additives Mg2+ and poly(styrene sulfonate) (PSS) on the early stages of growth of calcite crystals. Using a “Crystal Hotel” microfluidic device to provide well‐defined, nanoliter volumes, we observed that calcite crystals form via an amorphous precursor phase. Surprisingly, the first calcite crystals formed are perfect rhombohedra, and the soluble additives have no influence on the morphology until the crystals reach sizes of 0.1–0.5 μm for Mg2+ and 1–2 μm for PSS. The crystals then continue to grow to develop morphologies characteristic of these additives. These results can be rationalized by considering additive binding to kink sites, which is consistent with crystal growth by a classical mechanism.  相似文献   

8.
We use molecular dynamics simulations to investigate the nucleation of calcite crystals on self-assembled monolayers. We show how the presence of bicarbonate ions adsorbed on the monolayer surface can both aid nucleation and control the orientation of the growth of the crystal. Using a simple model of the nucleation process and calculated interfacial energies, we calculate the enhancement (with respect to the homogeneous nucleation rate) of the nucleation of calcite on the (012) and (0001) faces. The calculations show clearly that the (012) face is favored over the (0001) face and that the nucleation rate is enhanced for self-assembled monolayers made from molecules containing an even number of carbon atoms in the alkyl chain over those containing an odd number.  相似文献   

9.
The interaction between poly(L-glutamic acid) (PLE) and calcite crystals was studied with AFM-based single molecule force spectroscopy. Block copolymers of poly(ethylene oxide) (PEO) and PLE were synthesized and covalently attached to the tip of an AFM cantilever. In desorption measurements the molecules were allowed to adsorb on the calcite crystal faces and afterward successively desorbed. The corresponding desorption forces were detected with high precision, showing for example a force transition between the two blocks. Because of its importance in the crystallization process in biominerals, the PLE-calcite interaction was investigated as a function of the pH as well as the calcium concentration of the aqueous solution. The sensitivity of the technique was underlined by resolving different interaction forces for calcite (104) and calcite (100).  相似文献   

10.
Biomineralization is believed to be achieved by the intimate cooperation of soluble macromolecules and an insoluble matrix at the specific inorganic–organic interface. It has been reported that positively charged matrices play an important role in controlling the structure of CaCO3 at surfaces, although detailed mechanisms remain unclear. In this work, we studied the transformation from amorphous CaCO3 to calcite crystals on surfaces by using thin films of poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) and its quaternized form. The positively charged PDMAEMA film was found to possess unique properties for CaCO3 crystallization: individually separated, single calcite crystals were formed on the PDMAEMA film in the absence of poly(acrylic acid) (PAA), while circularly fused calcite crystals were formed in the presence of PAA. The circularly fused (rosette‐shaped) calcite crystals could be changed from a completely packed rosette to a ring‐shaped, hollow structure by tuning the crystallization conditions. A number of factors, such as reaction time, amount of (NH4)2CO3, concentration of PAA, and charge of matrix‐films, were varied systematically, and we now propose a mechanism based on these observations.  相似文献   

11.
该文以更加接近生物矿化的方法研究了蔗糖/精氨酸体系对碳酸钙晶体取向、形貌和晶型的控制作用.XRD 分析表明,在蔗糖/L-精氨酸混合体系中合成的晶体主要为碳酸钙的球霰石晶型及少量的方解石型,在单独的蔗糖或L-精氨酸溶液中基本是球霰石晶型.SEM分析表明,蔗糖和L-精氨酸均可诱导形成特殊形貌的碳酸钙.实验结果表明,蔗糖/精...  相似文献   

12.
通过液固界面上的溶解-沉淀耦合反应在Ba(NO3)2乙醇-水溶液中实现了毒重石晶型的碳酸钡在方解石(CaCO3)晶体基底上的外延生长, 得到碳酸钡的单晶微米锥阵列. 碳酸钡微米锥的长轴平行于毒重石晶体的[001]方向,同时也与方解石基底[001]晶向相同, 其俯视图为六边形, 具有近似的六方对称性. 随反应时间的增加, 外延生长形成的碳酸钡微米锥的尺寸增加, 但其轴径比逐渐减小. 通过改变乙醇-水混合溶剂中的乙醇含量或者Ba(NO3)2浓度也能调控碳酸钡晶体的尺寸和形貌. 随着混合溶剂中乙醇含量与Ba(NO3)2浓度的提高, 溶液中BaCO3的过饱和度增加, 通过外延生长在方解石的(104)表面形成的BaCO3阵列结构的密集程度逐渐增加, 尺寸逐渐减小, 形貌从微米锥逐渐转变为微米柱状结构. 经过对晶化过程及毒重石和方解石晶体结构分析,提出了在方解石表面外延生长形成的毒重石微米锥单晶阵列结构的形成过程机理: 该过程为界面溶解-沉淀耦合反应的过程,方解石的溶解和毒重石的外延生长过程同时进行, 由于两种晶体在方解石基底的(104)晶面与(001)晶面上具有中高度错配值, 毒重石晶体在方解石的这两个晶面上发生Volmer-Weber型的外延生长, 逐渐形成在靠近基底处包覆有方解石台阶的毒重石微米锥单晶阵列结构.  相似文献   

13.
Catalytic decomposition of urea by urease in aqueous calcium chloride solutions was used to rapidly prepare calcium carbonate polymorphs at room temperature. The nature of the resulting particles depended on the concentration of the enzyme and, in a strong manner, on the agitation of the reacting solutions. In an undisturbed system an amorphous precipitate is formed first, which readily crystallized to vaterite and upon aging changed to calcite. Under the influence of magnetic stirring, the amorphous phase could be not observed; instead smaller particles were initially obtained, which aggregated to vaterite and calcite. Similarly, the application of ultrasonic energy produced small vaterite particles at the early stages. It is apparent that enzyme macromolecules are important in the development of calcite faces and, as such, they exert significant influence on calcite morphology, without being present in detectable amounts in the resulting solids. Copyright 2001 Academic Press.  相似文献   

14.
The bulk morphology and surface features that developed upon precipitation on micrometer-size calcite powders and millimeter-size cleavage fragments were imaged by three different microscopic techniques: field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) of Pt-C replicas, and atomic force microscopy (AFM). Each technique can resolve some nanoscale surface features, but they offer different ranges of magnification and dimensional resolutions. Because sample preparation and imaging is not constrained by crystal orientation, FE-SEM and TEM of Pt-C replicas are best suited to image the overall morphology of microcrystals. However, owing to the decoration effect of Pt-C on the crystal faces, TEM of Pt-C replicas is superior at resolving nanoscale surface structures, including the development of new faces and the different microtopography among nonequivalent faces in microcrystals, which cannot be revealed by FE-SEM. In conjunction with SEM, Pt-C replica provides the evidence that crystals grow in diverse and face-specific modes. The TEM imaging of Pt-C replicas has nanoscale resolution comparable to AFM. AFM yielded quantitative information (e.g., crystallographic orientation and height of steps) of microtopographic features. In contrast to Pt-C replicas and SEM providing three-dimensional images of the crystals, AFM can only image one individual cleavage or flat surface at a time.  相似文献   

15.
The effects of seven carboxylic acids on calcite formation in the presence of Mg2+ ions, whose molar concentration ratio Mg2+/Ca2+ = 0.5 exclusively induced aragonite precipitation in the absence of carboxylic acids, were studied using a double diffusion technique. The presence of carboxylic acids, acrylic acid, maleic acid, tartaric acid, malonic acid, malic acid, succinic acid, and citric acid in the gel medium favored the formation of magnesian calcite relative to the amount of the additives. Induction time and the positions of the first precipitation were measured to analyze the behavior of crystallization based on the equivalency rule. The formation of magnesian calcite was also studied with the help of Avrami's equation (solid-state model for transformation). The results of applying this equation suggested that aragonite transformed into calcite through a solid-to-solid process. The formation of magnesian calcite was interpreted as the following process: aragonite nuclei, formed owing to Mg2+ ions at the initial stage of CaCO3 crystallization, transformed into calcite nuclei through a solid-to-solid process while their growth was inhibited by the adsorption of carboxylic acids. The magnesian calcite crystals grew on crystal seeds of calcite formed from aragonite nuclei. Copyright 1999 Academic Press.  相似文献   

16.
Calcite crystals nucleate on the (01.2) face on a diverse range of organic substrates, including self-assembled monolayers, hydrogen-bonded ribbons, and polymer rafts. The (01.2) face of calcite is a polar surface. Therefore macroscopic crystal growth can only occur if the dipole moment is quenched. We demonstrate that the dipole moment can be quenched for a given polar direction by adsorption onto an organic substrate with arbitrary charge density. The density of ions in the outer calcium plane must be modified, by introducing rows of vacancies, to fulfill the condition of zero net dipole moment. Interfacial energies are calculated for interfaces between the polar (01.2) and (00.1) faces of calcite and stearic acid monolayers with a range of densities. It was found that, contrary to the experimental evidence, the (00.1) face has lower interfacial energy than the (01.2) face with monolayers with equivalent densities. We give an explanation for this discrepancy based on kinetic models.  相似文献   

17.
Stimulation of microbially induced calcium carbonate precipitation (MICCP) is likely to be influenced by calcium sources. In order to study such influences, we performed MICCP using Bacillus sp. CR2 in nutrient broth containing urea, supplemented with different calcium sources (calcium chloride, calcium oxide, calcium acetate and calcium nitrate). The experiment lasted 7 days, during which bacterial growth, urease activity, calcite production and pH were measured. Our results showed that calcium chloride is the better calcium source for MICCP process, since it provides higher urease activity and more calcite production. The influences of calcium sources on MICCP were further studied using Fourier transform-infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. These analyses confirmed that the precipitate formed was CaCO3 and composed of predominantly calcite crystals with a little amount of aragonite and vaterite crystals. The maximum yield of calcite precipitation was achievable with calcium chloride followed by calcium nitrate as a calcium source. The results of present study may be applicable to media preparation during efficient MICCP process.  相似文献   

18.
Calcium carbonate was deposited on a stainless steel surface with the use of an electrical potential of 10 V. The crystals formed on the surface were examined with X-ray diffraction and with scanning electron microscopy, which revealed that calcite, vaterite and amorphous calcium carbonate was formed. Two different surface active polymers were added to the solution and their effect on the crystal structure was investigated. It was found that the more hydrophilic of the two polymers promoted calcite growth and suppressed vaterite growth. The more hydrophobic polymer completely inhibited vaterite growth. Both polymers decreased the amount of crystals formed on the steel surface, the more hydrophobic polymer being the most effective. The crystal inhibition efficiency was enhanced close to the cloud point of the polymers. The results were compared with the effect of poly(acrylic acid), a commonly used antiscalant. It was found that poly(acrylic acid) was about as efficient as the more hydrophobic polymer in decreasing the amount of calcium carbonate. At higher concentrations of poly(acrylic acid), almost all of the calcium carbonate precipitated in the amorphous form.  相似文献   

19.
Synthetic calcite single crystals,due to their strong crystal habit,tend to grow into characteristic rhombohedra.In the nature,biogenic calcite crystals form composites together with biomacromolecular materials,spurring investigations of how the growing calcite single crystals change their habit to satisfy the curvature of the organic phase.In this work,we examine calcite crystallization on a flat surface of glass slide and a curved surface of polystyrene(PS)sphere.The crystals exhibit tiny contact area onto the glass substrate that is averagely only 15% of their projected area on the substrate.In sharp contrast,the contact area greatly increase to above 75% of the projected area,once magnesium ions or agarose gel networks are introduced into the crystallization media.Furthermore,the calcite crystals form rough and step-like interfaces with a curved surface.However,the interfaces become smooth and curved as the crystals grow in presence of magnesium ions or agarose gel networks.The discrepancy between the interfacial structures implies kinetic effects of the additives on the crystallization around the surfaces. This work may provide implications for understanding the formation mechanisms of single-crystal composite materials.  相似文献   

20.
Bacterially induced carbonate mineralization has been proposed as a new method for the restoration of limestones in historic buildings and monuments. We describe here the formation of calcite crystals by extracellular polymeric substances isolated from Bacillus firmus and Bacillus sphaericus. We isolated bacterial outer structures (glycocalix and parietal polymers), such as exopolysaccharides (EPS) and capsular polysaccharides (CPS) and checked for their influence on calcite precipitation. CPS and EPS extracted from both B. firmus and B. sphaericus were able to mediate CaCO3 precipitation in vitro. X-ray microanalysis showed that in all cases the formed crystals were calcite. Scanning electron microscopy showed that the shape of the crystals depended on the fractions utilized. These results suggest the possibility that biochemical composition of CPS or EPS influences the resulting morphology of CaCO3. There were no precipitates in the blank samples. CPS and EPS comprised of proteins and glycoproteins. Positive alcian blue staining also reveals acidic polysaccharides in CPS and EPS fractions. Proteins with molecular masses of 25-40 kDa and 70 kDa in the CPS fraction were highly expressed in the presence of calcium oxalate. This high level of synthesis could be related to the binding of calcium ions and carbonate deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号