首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Min Chen 《Discrete Mathematics》2008,308(24):6216-6225
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment L={L(v):vV}, there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper we prove that every planar graph without 4-cycles and without two 3-cycles at distance less than 3 is acyclically 5-choosable. This improves a result in [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory 51 (2006) 281-300], which says that planar graphs of girth at least 5 are acyclically 5-choosable.  相似文献   

2.
The conjecture on the acyclic 5-choosability of planar graphs (Borodin et al., 2002) as yet has been verified only for several restricted classes of graphs: those of girth at least 5 (Montassier, Ochem, and Raspaud, 2006), without 4- and 5-cycles or without 4- and 6-cycles (Montassier, Raspaud, and Wang, 2007), with neither 4-cycles nor chordal 6-cycles (Zhang and Xu, 2009), with neither 4- cycles nor two 3-cycles at distance less than 3 (Chen and Wang, 2008), and with neither 4-cycles nor intersecting 3-cycles (Chen and Raspaud, 2010). Wang and Chen (2009) proved that the planar graphs without 4-cycles are acyclically 6-choosable. We prove that a planar graph without 4-cycles is acyclically 5-choosable, which is a common strengthening of all above-mentioned results.  相似文献   

3.
设d_1,d_2,···,d_k是k个非负整数,若图G=(V,E)的顶点集V能被剖分成k个子集V_1,V_2,···,V_k,使得对任意的i=1,···,k,V_i的点导出子图G[Vi]的最大度至多为di,则称图G是(d_1,d_2,···,d_k)-可染的,本文证明了既不含4-圈又不含5-圈的平面图是(9,9)-可染的.  相似文献   

4.
5.
图G的一个无圈边着色是一个正常的边着色且不含双色的圈.图G的无圈边色数是图G的无圈边着色中所用色数的最小者.本文用反证法得到了不含5-圈的平面图G的无圈边色数的一个上界.  相似文献   

6.
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment L={L(v):vV}, there exists a proper acyclic coloring ? of G such that ?(v)∈L(v) for all vV(G). If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper it is proved that every planar graph with neither 4-cycles nor chordal 6-cycles is acyclically 5-choosable. This generalizes the results of [M. Montassier, A. Raspaud, W. Wang, Acyclic 5-choosability of planar graphs without small cycles, J. Graph Theory 54 (2007) 245-260], and a corollary of [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory 51 (4) (2006) 281-300].  相似文献   

7.
A 2-coloring is a coloring of vertices of a graph with colors 1 and 2. Define Vi?{vV(G):c(v)=i} for i=1 and 2. We say that G is (d1,d2)-colorable if G has a 2-coloring such that Vi is an empty set or the induced subgraph G[Vi] has the maximum degree at most di for i=1 and 2. Let G be a planar graph without 4-cycles and 5-cycles. We show that the problem to determine whether G is (0,k)-colorable is NP-complete for every positive integer k. Moreover, we construct non-(1,k)-colorable planar graphs without 4-cycles and 5-cycles for every positive integer k. In contrast, we prove that G is (d1,d2)-colorable where (d1,d2)=(4,4),(3,5), and (2,9).  相似文献   

8.
9.
《Discrete Mathematics》2022,345(4):112790
DP-coloring of graphs as a generalization of list coloring was introduced by Dvo?ák and Postle (2018). In this paper, we show that every planar graph without intersecting 5-cycles is DP-4-colorable, which improves the result of Hu and Wu (2017), who proved that every planar graph without intersecting 5-cycles is 4-choosable, and the results of Kim and Ozeki (2018).  相似文献   

10.
Every planar graph is known to be acyclically 7-choosable and is conjectured to be acyclically 5-choosable (Borodin et al. 2002) [7]. This conjecture if proved would imply both Borodin’s acyclic 5-color theorem (1979) and Thomassen’s 5-choosability theorem (1994). However, as yet it has been verified only for several restricted classes of graphs.Some sufficient conditions are also obtained for a planar graph to be acyclically 4-choosable and 3-choosable. In particular, acyclic 4-choosability was proved for the following planar graphs: without 3-cycles and 4-cycles (Montassier, 2006 [23]), without 4-cycles, 5-cycles and 6-cycles (Montassier et al. 2006 [24]), and either without 4-cycles, 6-cycles and 7-cycles, or without 4-cycles, 6-cycles and 8-cycles (Chen et al. 2009 [14]).In this paper it is proved that each planar graph with neither 4-cycles nor 6-cycles adjacent to a triangle is acyclically 4-choosable, which covers these four results.  相似文献   

11.
《Discrete Mathematics》2023,346(1):113192
Steinberg conjectured in 1976 that every planar graph with no cycles of length four or five is 3-colorable. This conjecture is disproved by constructing a planar graph with no cycles of length four or five but intersecting triangles. Jin et al. proved that plane graphs without 4- and 5-cycles and without ext-triangular 7-cycles are 3-colorable [SIAM J. Discrete Math. 31 (3) (2017) 1836–1847]. In this paper, we point out a mistake of their proof and give an improved proof.  相似文献   

12.
A proper vertex coloring of a graph is acyclic if every cycle uses at least three colors. A graph G is acyclically k-choosable if for any list assignment L = {L(v) : v ∈ V(G)} with |L(v)| ≥ k for all v ∈ V(G), there exists a proper acyclic vertex coloring φ of G such that φ(v) ∈ L(v) for all v ∈ V(G). In this paper, we prove that if G is a planar graph and contains no 5-cycles and no adjacent 4-cycles, then G is acyclically 6-choosable.  相似文献   

13.
14.
On total chromatic number of planar graphs without 4-cycles   总被引:5,自引:0,他引:5  
Let G be a simple graph with maximum degree A(G) and total chromatic number Xve(G). Vizing conjectured thatΔ(G) 1≤Xve(G)≤Δ(G) 2 (Total Chromatic Conjecture). Even for planar graphs, this conjecture has not been settled yet. The unsettled difficult case for planar graphs isΔ(G) = 6. This paper shows that if G is a simple planar graph with maximum degree 6 and without 4-cycles, then Xve(G)≤8. Together with the previous results on this topic, this shows that every simple planar graph without 4-cycles satisfies the Total Chromatic Conjecture.  相似文献   

15.
Planar graphs without 5-cycles or without 6-cycles   总被引:1,自引:0,他引:1  
Qin Ma  Xiao Yu 《Discrete Mathematics》2009,309(10):2998-1187
Let G be a planar graph without 5-cycles or without 6-cycles. In this paper, we prove that if G is connected and δ(G)≥2, then there exists an edge xyE(G) such that d(x)+d(y)≤9, or there is a 2-alternating cycle. By using the above result, we obtain that (1) its linear 2-arboricity , (2) its list total chromatic number is Δ(G)+1 if Δ(G)≥8, and (3) its list edge chromatic number is Δ(G) if Δ(G)≥8.  相似文献   

16.
17.
图G的(2,1)-全标号是对图G的顶点和边的一个标号分配,使得:(1)任意两个相邻顶点标号不同;(2)任意两条相邻边标号不同;(3)任意顶点与其相关联的边标号至少相差2.两个标号的最大差值称为跨度,图G的所有(2,1)-全标号的最小跨度称为(2,1)-全标号数,记为λ_2~T(G).本文证明了如果G是一个?=p+5的平面图,且G不包含5-圈和6-圈,那么λ_2~T(G)=2?-p,p=1,2,3.  相似文献   

18.
Some structural properties of planar graphs without 4-cycles are investigated. By the structural properties, it is proved that every planar graph G without 4-cycles is edge-(Δ(G)+1)-choosable, which perfects the result given by Zhang and Wu: If G is a planar graph without 4-cycles, then G is edge-t-choosable, where t=7 if Δ(G)=5, and otherwise t=Δ(G)+1.  相似文献   

19.
Let G be a plane graph having no 5-cycles with a chord. If either Δ≥6, or Δ=5 and G contains no 4-cycles with a chord or no 6-cycles with a chord, then G is edge-(Δ+1)-choosable, where Δ denotes the maximum degree of G.  相似文献   

20.
In this paper, we mainly prove that planar graphs without 4-, 7- and 9-cycles are 3-colorable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号