首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Using the tight-binding model and Green’s function method, we studied the electronic transport of four kinds of nanotube-graphene junctions. The results show the transport properties depend on both types of the carbon nanotube and graphene nanoribbon, metal or semiconducting. Moreover, the defect at the nanotube-graphene interface did not affect the conductance of the whole system at the Fermi level. In the double junction of nanotube/nanoribbon/nanotube, quasibound states are found, which cause antiresonance and result in conductance dips.  相似文献   

2.
单壁碳纳米管电子输运特性的稳定性分析   总被引:3,自引:0,他引:3       下载免费PDF全文
梅龙伟  张振华  丁开和 《物理学报》2009,58(3):1971-1979
基于变形单壁碳纳米管能量色散关系,计算了碳纳米管最低导带的电子速度及有效质量随形变系数变化的各种曲线,以此推测碳纳米管输运性质的稳定性问题.计算结果表明:对于特定类型的碳纳米管,只当其形变发生在某特定方向、且处于低形变(形变系数ε≤002 )区时,电子平均速度vmean及平均有效质量m*mean随形变改变才会很小(相对改变量≤2%),这意味着此时的碳纳米管低偏压电子输运性能是基本稳定的.而其他形变情形,电子平均速度vmean或电子平均有效质量m*mean或两者随形变变化明显,甚至有跃变,这意味着其低偏压电子输运性能是不稳定的,甚至极不稳定. 关键词: 变形单壁碳纳米管 电子速度 电子有效质量 输运性能稳定性  相似文献   

3.
S A KETABI  M NAKHAEE 《Pramana》2016,86(3):669-680
In this paper, a detailed numerical study of the role of selected soliton distributions on the spin-dependent transport through trans-polyacetylene (PA) molecule is presented. The molecule is attached symmetrically to magnetic semi-infinite three-dimensional electrodes. Based on Su– Schrieffer–Heeger (SSH) Hamiltonian and using a generalized Green’s function formalism, we calculate the spin-dependent currents, the electronic transmission and tunnelling magnetoresistance (TMR). We found that the presence of a uniform distribution of the soliton centres along the molecular chain reduced the size of the band gap of trans-PA molecule. Moreover, a sublattice of the correlated solitons as binary clusters, which are randomly distributed along the chain, can induce extended electronic states in the band gap of the molecule. In this case, the band gap of the molecule is suppressed and at lower voltages, the TMR bandwidth is narrowed. The current–voltage characteristic then shows an ohmic-like behaviour.  相似文献   

4.
This paper reviews progress that has been made in the use of Raman spectroscopy to study graphene and carbon nanotubes. These are two nanostructured forms of sp2 carbon materials that are of major current interest. These nanostructured materials have attracted particular attention because of their simplicity, small physical size and the exciting new science they have introduced. This review focuses on each of these materials systems individually and comparatively as prototype examples of nanostructured materials. In particular, this paper discusses the power of Raman spectroscopy as a probe and a characterization tool for sp2 carbon materials, with particular emphasis given to the field of photophysics. Some coverage is also given to the close relatives of these sp2 carbon materials, namely graphite, a three-dimensional (3D) material based on the AB stacking of individual graphene layers, and carbon nanoribbons, which are one-dimensional (1D) planar structures, where the width of the ribbon is on the nanometer length scale. Carbon nanoribbons differ from carbon nanotubes is that nanoribbons have edges, whereas nanotubes have terminations only at their two ends.  相似文献   

5.
The regular adsorption of fluorine atoms on surfaces of single-walled carbon nanotubes along their axes can lead to a modification of cylindrical carbon cores of these single-walled carbon nanotubes to carbon cores that have a nearly prismatic shape (prismatic modification). In faces of these modified single-walled carbon nanotubes, there can arise quasi-one-dimensional isolated carbon conjugated subsystems (tracks) with different structures. It has been established that the main characteristics of the single-walled carbon nanotubes thus modified are rather close to the corresponding characteristics of the related isostructural polymer conjugated systems (such as cis-polyenes, polyphenylenes, poly(periacenes), or polyphenantrenes). Fragments of model nanotubes of the (n, n) and (n, 0) types that contain up to 360 carbon atoms and their derivatives doped with fluorine atoms have been calculated using the semiempirical parametric method 3.  相似文献   

6.
The regular adsorption of fluorine atoms on the surfaces of single-walled carbon nanotubes along their cylindrical axes leads to a modification of cylindrical carbon skeletons of these single-walled carbon nanotubes into carbon skeletons that have a nearly “anti-prismatic” shape (anti-prismatic modifications). In the faces of these modified single-walled carbon nanotubes, there can arise quasi-one-dimensional isolated carbon conjugated subsystems (tracks) with different structures. Model fragments of nanotubes of the (n, 0) type that contain up to 360 carbon atoms and their derivatives with regularly adsorbed fluorine atoms on the graphene surface have been calculated using the semiempirical PM3 method. It has been found that the main properties of the single-walled carbon nanotubes modified by the above method are determined by the character of the conjugation of the electrons in isolated carbon tracks, which is close to the character of the conjugation of the electrons in the initial single-walled carbon nanotubes.  相似文献   

7.
魏燕  胡慧芳  王志勇  程彩萍  陈南庭  谢能 《物理学报》2011,60(2):27307-027307
运用第一性原理的密度泛函理论,结合非平衡格林函数,研究了氮原子取代掺杂手性单壁(6,3)碳纳米管的电子结构和输运特性.计算结果表明:不同构形和不同数目的氮原子取代掺杂对手性碳管的输运性质有很复杂的影响.研究发现,氮原子掺杂明显改变了碳管的电子结构,使金属型手性碳管的输运性能降低,电流-电压曲线呈非线性变化,而且输运性能随着杂质原子间间距的变化而发生显著改变.在一定条件下,金属型碳管向半导体型转变. 关键词: 手性单壁碳纳米管 氮掺杂 电子结构 输运性能  相似文献   

8.
Transport measurements on a bundle of single-walled carbon nanotubes have been made below 4.2 K as a function of side gate and source–drain bias voltage. The transport of an individual nanotube is described by the Coulomb blockade effect. The zero-dimensional quantum states of the nanotube become clear for measurements of large bias voltage. In addition, we present preliminary results of microwave application to the SWNT dot, and the results can be qualitatively explained by classical coupling to the dot.  相似文献   

9.
A survey will be given on selected experiments showing evidence of quantum transport in carbon nanotubes. The phenomena involve electron confinement, single electron effects and Coulomb–Blockade, Kondo-physics, conductance quantisation, Aharonov–Bohm effect, phase breaking in ballistic transport, and magnetochiral anisotropy.  相似文献   

10.
We present transport measurements of ferromagnetically contacted carbon nanotubes. In both single- and multi-walled nanotube devices, a spin valve effect is observed due to spin-polarized transport. In one single-walled nanotube device, the spin-valve effect is suppressed as the influence of Coulomb charging is observed at around 10 K. To help understand the interplay between the Coulomb charging and the spin-polarized transport we investigated the temperature dependence of the carbon nanotube magnetoresistance.  相似文献   

11.
The low-energy theory for single-wall armchair carbon nanotubes including Coulomb interactions is given. It describes two fermion chains without interchain hopping but coupled in a specific way by the interaction. The strong-coupling properties are studied by bosonization, and the consequences for experiments on single armchair nanotubes are discussed.  相似文献   

12.
Journal of Nanoparticle Research - We have applied ab initio electronic structure method to search minimum energetic structures of the supported and free bimetallic PdCo nanosized particles by...  相似文献   

13.
We investigate the conductivity σ of graphene nanoribbons with zigzag edges as a function of Fermi energy EF in the presence of the impurities with different potential range. The dependence of σ(EF) displays four different types of behavior, classified to different regimes of length scales decided by the impurity potential range and its density. Particularly, low density of long range impurities results in an extremely low conductance compared to the ballistic value, a linear dependence of σ(EF) and a wide dip near the Dirac point, due to the special properties of long range potential and edge states. These behaviors agree well with the results from a recent experiment by Miao et al. [Science 317 (2007) 1530 (SOM)].  相似文献   

14.
The electronic structures and transport properties of (10,0)(10,0) single-walled carbon nanotube ((10,0)(10,0) (SWNT)) with oxygen-containing defect complex are investigated using density functional theory in combination with nonequilibrium Green?s function method. The complex delocalizes the local states of (10,0)(10,0) SWNT induced by mono- and di-vacancy but strengthens the localization of the states induced by the Stone–Wales defect. As a result, the complex partially restores the transport properties of (10,0)(10,0) SWNT with vacancies, but reduces the transmission of (10,0)(10,0) SWNT with Stone–Wales defect. However, the oxygen-containing defect complex only slightly influences the transmission gap and threshold voltage of the system.  相似文献   

15.
In the present research paper, phonons in graphene sheet have been calculated by constructing a dynamical matrix using the force constants derived from the second-generation reactive empirical bond order potential by Brenner and co-workers. Our results are comparable to inelastic X-ray scattering as well as first principle calculations. At Γ point, for graphene, the optical modes (degenerate) lie near 1685 cm???1. The frequency regimes are easily distinguishable. The low-frequency (ω→ 0) modes are derived from acoustic branches of the sheet. The radial modes can be identified with ω→ 584 cm???1. High-frequency regime is above 1200 cm???1 (i.e. ZO mode) and consists of TO and LO modes. The phonons in a nanotube can be derived from zone folding method using phonons of a single layer of the hexagonal sheet. The present work aims to explore the agreement between theory and experiment. A better knowledge of the phonon dispersion of graphene is highly desirable to model and understand the properties of carbon nanotubes. The development and production of carbon nanotubes (CNTs) for possible applications need reliable and quick analytical characterization. Our results may serve as an accurate tool for the spectroscopic determination of the tube radii and chiralities.  相似文献   

16.
Results of a study of electronic energy loss of low keV protons interacting with multilayer graphene targets are presented. Proton energy loss shows an unexpectedly high value as compared with measurements in amorphous carbon and carbon nanotubes. Furthermore, we observe a classical linear behavior of the energy loss with the ion velocity but with an apparent velocity threshold around 0.1?a.u., which is not observed in other carbon allotropes. This suggests low dimensionality effects which can be due to the extraordinary graphene properties.  相似文献   

17.
The transport properties of finite length double-walled carbon nanotubes subject to the influences of a transverse electric field and a magnetic field with varying polar angles are investigated theoretically. The electrical conductance, thermal conductance and Peltier coefficient dependences on the external fields and symmetric configuration are studied in linear response regime. Prominent peak structures of the electrical conductance are predicted when varying the electric field strength. The features of the conductance peaks are found to be strongly dependent on the external fields and the intertube interactions. The heights of the electrical and thermal conductance peaks display the quantized behavior, while those of the Peltier coefficient do not. The conductance peaks are found to be broadened by the finite temperature.  相似文献   

18.
Electronic transport measurements were performed on Y-junction carbon nanotubes. These novel junctions contain a large diameter tube branched into smaller ones. Independent measurements using good quality contacts on both individual Y junctions and many in parallel show intrinsic nonlinear transport and reproducible rectifying behavior at room temperature. The results were modeled using classic interface physics for a junction with an abrupt change in band gap due to the change in tube diameter. These Y-junction tubes represent new heterojunctions for nanoelectronics.  相似文献   

19.
The transport behavior of pressure-driven aqueous electrolyte solution through charged carbon nanotubes(CNTs) is studied by using molecular dynamics simulations. The results reveal that the presence of charges around the nanotube can remarkably reduce the flow velocity as well as the slip length of the aqueous solution, and the decreasing of magnitude depends on the number of surface charges and distribution. With 1-M KCl solution inside the carbon nanotube, the slip length decreases from 110 nm to only 14 nm when the number of surface charges increases from 0 to 12 e. This phenomenon is attributed to the increase of the solid–liquid friction force due to the electrostatic interaction between the charges and the electrolyte particles, which can impede the transports of water molecules and electrolyte ions. With the simulation results,we estimate the energy conversion efficiency of nanofluidic battery based on CNTs, and find that the highest efficiency is only around 30% but not 60% as expected in previous work.  相似文献   

20.
We investigate theoretically the ballistic regime exhibited by conduction electrons in multiwalled carbon nanotubes in relation to the conductance quantization in these tubes. Starting from the fact that electron drift mobility is quantized in multiwall tubes, essential aspects related to both ballistic and diffusive regimes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号