首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王德真  吴洪涛 《中国物理》2002,11(8):799-803
The radial distributions of ions,electrons and dust particles in the positive colum of glow discharges are investigated in a tripled-pole diffusion model.The dust particles are mainly trapped in the region around the column axis where the electrostatic potential is the highest.The presence of the dust particles results in the ion density increasing and the electron density decreasiung in the dust-trapped region.The dust-trapped region is wider for a higher dust temperature or a smaller particulate redius.The ions and electrons in the dust-free region away from the column axis are in ambipolar diffusion.  相似文献   

2.
Different scenarios of the spatiotemporal evolution of the parameters of the diffusive decay of a pulsed electronegative gas plasma in the absence of plasma chemical processes are studied. It is shown that nonlinear diffusion in a plasma with negative ions occurs in several stages. The rate of electron density decay increases with time and, in the beginning of the second stage, almost all the electrons escape from the discharge volume. On the other hand, the ion density profile is smoothed out due to ion-ion ambipolar diffusion and the flow of negative ions toward the wall is absent in the first stage of decay. In the second stage, the main diffusion mode is first established and then the ion-ion (electronless) plasma decays exponentially with a characteristic time determined by ion-ion ambipolar diffusion.  相似文献   

3.
The scope of this research is to investigate experimentally electron (ne), negative ion (n-) and positive ion (n+) densities characterizing laboratory negative ion-rich plasmas, produced by electron attachment in N2O3, O2 and I2, and to find out the factors limiting the achievement of very low ? (relative electron density ? = ne/n+). These plasmas may be of great interest for the production of negative ion beams. It is shown experimentally that it is possible to produce plasmas with a high proportion of negative ions (n-/n+ ? 90 %) and a low proportion of electrons, at densities n+ up to 1011 cm-3. The comparison of mass spectrometric data with kinetic calculations leads to the conclusion that the loss of negative ions by diffusion limits the lowest ? achieved at low ion density (n+ < 109 cm-3). At higher ion density, mutual neutralization seems to control the ? values. A general limitation seems to exist for the lowest ? attainable in small plasmas produced by electron attachment : the confinement of negative ions in a plasma is due to the presence of electrons and therefore this confinement becomes inefficient when ? drops to values as low as 10-3.  相似文献   

4.
Ion current density measurements were made in an electron cyclotron resonance (ECR) plasma reactor for both argon and oxygen discharges. Spatial changes in the ion current density were also recorded across the reactor diameter for changes in pressure and power. These measurements revealed a minimum in the ion current density on the reactor axis. This observation has been explained as a consequence of the shape of the ECR region, which, in turn, is dependent on the mode of coupling. Current density measurements were made as a function of reactor pressure and microwave power for two different axial locations in the system. A Langmuir probe was also used at these two locations to measure the electron temperature as a function of these process conditions. It was observed that the ion current density and/or plasma density measured downstream from the ECR zone, increased significantly in the low-pressure/high-microwave power region. Results from this region of the operating parameter space have not previously been reported. Further existing models do not predict this observed increase in plasma density or ion current density. It has been proposed that a rarefication of the gas in the ECR region, as a result of gas heating, has acted to increase the outward diffusion of electrons from the ECR zone and, thus, has increased the ambipolar diffusion of ions to the downstream location. This proposal has been partially validated by experimental results in which the ion energy was measured as a function of reactor pressure and gas flow rate. The shape of the oxygen parameter space map differs significantly from that for Ar. The principal reasons for these changes are a number of different inelastic electron scattering mechanisms which effect the transport electrons out of the ECR zone and through ambipolar diffusion also the transport of ions. The second factor is the production of negative ionic species which varies with reactor pressure and, thus, Te  相似文献   

5.
A basic property of an electronegative plasma is its separation into two distinct regions: an ion‐ion region far from boundaries, where the densities of positive and negative ions are higher then electron density, and a near‐boundary electron‐ion region, where negative ions have practically negligible density. This is due to the influence of the ambipolar electric field, which depends on electron (not negative ion) plasma parameters. This electric field “holds off” negative ions from the boundary, as the ions have lower mobility and temperature compared to the electrons. Therefore, negative ions will be repelled by any object inserted into the plasma. This can lead to errors in measurements of negative ion and electron parameters by any invasive method. Numerical modeling of electric probes in an argon‐oxygen plasma clearly demonstrates possible errors of direct measurements of negative ion probe current. This can also affect results from the photo‐detachment method and direct measurements of negative ion energy distribution (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
An analytical solution of the Tonks-Langmuir (TL) problem with a bi-Maxwellian electron energy distribution function (EEDF) is obtained for a plasma slab. The solution shows that the ambipolar potential, the plasma density distribution, and the ion flux to the wall are mainly governed by the cold electrons, while the ionization rate and voltage drop across the wall sheath are governed by the hot electrons. The ionization rate by direct electron impact is found to be spatially rather uniform, contrary to the T-L solution where it is proportional to the plasma density distribution. The temperature of hot electrons defined by the ionization balance is found to be close to that of the T-L solution for a mono-Maxwellian EEDF, and is in reasonable agreement with experiments carried out in a low pressure capacitance RF discharge. The energy balance for cold electrons in this discharge shows that their heating by hot electrons via Coulomb interaction is equalized by the cold electrons' escape to the RF electrodes during collapse of the RF sheath  相似文献   

7.
A theory is developed for the density profile of low temperature plasmas confined by applied magnetic field and an experiment of the electron-cyclotron-resonance (ECR) plasma is conducted to compare the theoretical prediction and experimental measurements. Due to a large electron mobility along the magnetic field, electrons move quickly out of the system, leaving ions behind and building a space charge potential, which leads to the ambipolar diffusion of ions. In a steady-state condition, the plasma generation by ionization of neutral molecules is in balance with plasma loss due to the diffusion, leading to the electron temperature equation, which is expressed in terms of the plasma size, chamber pressure, and the ionization energy and cross section of neutrals. The power balance condition leads to the plasma density equation, which is also expressed in terms of the electron temperature, the input microwave power and the chamber pressure. It is shown that the plasma density increases, reaches its peak and decreases, as the chamber pressure increases from a small value (0.1 mTorr). These simple expressions of electron temperature and density provide a scaling law of ECR plasma in terms of system parameters. After carrying out an experimental observation, it is concluded that the theoretical predictions of the electron temperature and plasma density agree remarkably well with experimental data  相似文献   

8.
9.
10.
Comprehensive self-consistent simulations of the positive column plasma of a dc oxygen discharge are performed with the help of commercial CFDRC software (), which enables one to carry out computations in an arbitrary 3D geometry using fluid equations for heavy components and a kinetic equation for electrons. The main scaling laws for the spatial distributions of charged particles are determined. These scaling laws are found to be quite different in the parameter ranges that are dominated by different physical processes. At low pressures, both the electrons and negative ions in the inner discharge region obey a Boltzmann distribution; as a result, a flat profile of the electron density and a parabolic profile of the ion density are established there. In the ion balance, transport processes prevail, so that ion heating in an electric field dramatically affects the spatial distribution of the charged particles. At elevated pressures, the volume processes prevail in the balance of negative ions and the profiles of the charged particle densities in the inner region turn out to be similar to each other.  相似文献   

11.
王俊  王涛  唐成双  辛煜 《物理学报》2016,65(5):55203-055203
甚高频激发的容性耦合等离子体由于离子通量和能量的相对独立可控而受到人们的关注. 本文采用朗缪尔探针诊断技术测量了40.68 MHz激发的容性耦合Ar等离子体的特性(如电子能量概率分布、电子温度和密度等)随宏观参量的演变情况. 实验结果表明, 电子能量概率分布随着气压的增加从双麦克斯韦分布逐步转变为单麦克斯韦分布并最终演变为Druyvesteyn分布, 而射频激发功率的增加促进了低能电子布居数的增强; 在从等离子体放电中心移向边界的过程中, 低能电子的布居数显著下降, 而高能电子的布居则有所上升; 放电极板间距的变化直接导致了等离子体中电子加热模式的转变. 另外, 我们也对等离子体中的高低能电子密度和温度的分配情况进行了讨论.  相似文献   

12.
13.
黄矛  刘克玲 《物理学报》1987,36(5):630-639
本文计算了电感耦合氩等离子体中各碰撞截面及电导、热导、扩散和粘滞系数。指出热导在能量传递中起着重要作用,双极扩散则会造成冷等离子体区拥有比局部热平衡值大得多的电子密度。更重要的是,计算表明:三体复合和超弹性碰撞会导致冷等离子体区出现大量的高能电子,这种电子速度分布对Maxwell分布的偏离对作为发射光谱光源的等离子体的激发性质有着特殊的重要意义。 关键词:  相似文献   

14.
15.
The paper deals with the impact of intensive electron attachment on the kinetics of the electrons in the active zone of the stationary band-like beam discharge plasma in SF6 which is an alternative useful plasma medium for “dry etching”. The energy distribution of the electrons in this plasma was obtained by numerically solving the Boltzmann equation which includes apart from elastic collisions, different exciting collision processes, attachment in electron collisions, direct ionization, the ambipolar loss of electrons, Coulomb interaction between electrons and of electrons with ions and the power input to the electrons by the turbulent electric field. In particular, due to the needed fulfilment of the consistent electron particle balance, for an extended region of the turbulence energy density in this plasma a large impact on the electron kinetics of the intensive electron attachment, which is the prevailing electron loss process, was found enforcing independent of the turbulence energy density always a large power input to the electrons, smooth and only slowly decreasing energy distributions even in the energy region of direct ionization.  相似文献   

16.
17.
18.
A technique is proposed for estimating parameters of the plasma produced by a source based on the electron cyclotron resonance. The analysis is made for the ion cyclotron resonance (ICR) facility designed for separating calcium isotopes. It is assumed that the resonance condition for an extraordinary wave is fulfilled for electrons moving towards the wave. The plasma optical thickness, the transverse energy of resonance electrons, and its dependence on the longitudinal velocity are determined. The charged particle density in the plasma flow is estimated in terms of the balance of the electrons generated as a result of vapor ionization in the discharge zone and the electron losses due to longitudinal ambipolar diffusion.  相似文献   

19.
Reflection coefficients of electromagnetic waves in a nonuniform plasma layer with electrons, positive ions and negative ions, covering a metal surface are investigated by using the finite-difference-time-domMn method. It is shown that the reflection coemcients are influenced greatly by the density gradient on the layer edge, layer thickness and electron proportion, i.e., the effect of the negative ions. It is also found that low reflection or high attenuation can be reached by properly choosing high electron proportion, thick plasma layer, and smooth density gradient in the low frequency regime, but sharp density gradient in the high frequency regime.  相似文献   

20.
The characterization of the plasma state is of great interest in industrial applications based on plasma enhanced chemical vapour deposition (CVD) processes. We have performed experiments on a capacitively coupled radio frequency discharges in air and SF6. The use of gases containing electronegative components, such as oxygen or fluorine, leads to quite peculiar discharges, due to the presence of negative ions which affects the transport properties of such a plasma. Plasma parameters have been measured by means of movable electrostatic Langmuir probes. The implementation of a suitable numerical model of gas-phase chemistry and transport phenomena allow us to predict the amount of negative ions. In particular we show that the ion to electron density ratio strongly depends on the diffusion process and on ion recombination rates. Thus measuring it leads to a better understanding of ion diffusion and in particular of the ambipolar electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号