首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrahigh-efficiency TEM00 operation is demonstrated in a diode-pumped Nd:YVO4 laser in a bounce amplifier geometry using a specially designed astigmatically optimised cavity configuration. Optical efficiency >68% is demonstrated and up to 27.1 W of output power for multimode operation. For single-mode TEM00 operation, an output power of 23.1 W for 39.5 W of diode pumping was produced with beam propagation parameters of Mx 2=1.3 and My 2=1.1. Received: 10 October 2002 / Revised version: 9 December 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +44-20/7594-7744, E-mail: a.minassian@ic.ac.uk  相似文献   

2.
We report on a passively Q-switched diode-pumped Nd:YVO4 laser polarized along the a axis (corresponding to the smallest value of emission cross section at 1064 nm), generating 157-μJ pulses with 6.0-ns time duration (>20 kW peak power) and 3.6 W of average power at 1064 nm with good beam quality (M2<1.4). The selection of the polarization was performed by a novel technique relying on the birefringence of the laser crystal and on the misalignment sensitivity of the resonator. Received: 30 September 2002 / Revised version: 22 November 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +39-382/422583, E-mail: agnesi@ele.unipv.it  相似文献   

3.
A high-repetition-rate eye-safe optical parametric oscillator (OPO), using a non-critically phase-matched KTP crystal intracavity pumped by an acousto-optically (AO) Q-switchedNd:YVO4 laser, is experimentally demonstrated. It is found that the average OPO signal power at 1573 nm can be efficiently increased by increasing the pulse repetition rate. Moreover, the intracavity OPO process effectively shortens the pulse width so that it is in the range 5∼8 ns for pulse repetition rates of 10 to 80 kHz. As a result of the relatively short pulse, the peak power at 1573 nm is higher than 2 kW at a pulse repetition rate of 80 kHz. Received: 10 July 2002 / Published online: 26 February 2003 RID="*" ID="*"Corresponding author. Fax: +886-35/729-134, E-mail: yfchen@cc.nctu.edu.tw  相似文献   

4.
We investigated the energetic and thermal performance of a diode-side-pumped Nd:YAG rod laser with up to 50 W power deposited as excess heat into a 3-mm-diameter, 10-cm-length rod. The rod design produces an extremely flat gain profile resulting in “textbook” expressions of thermal lensing and birefringence. Thermal and energetic measurements are compared to corresponding “textbook” theoretical expressions. Discrepancies between various published thermo-mechanical YAG parameters are resolved by a self-consistent set of measured and calculated data for rod thermal lens focal lengths, birefringence depolarization and ratio of heat to stored energy (χ). Measured thermal and energetic performance under lasing and nonlasing conditions are presented, which agree with published theoretical expressions and measurements. Compensation of rod thermal lensing with simple spherical concave lenses is demonstrated. In addition various methods for compensating birefringence depolarization are theoretically and experimentally analyzed and compared. Received: 19 July 1999 / Revised version: 22 October 1999 / Published online: 23 February 2000  相似文献   

5.
We report on new, simple and efficient multipass amplifiers using prisms or corner cubes to perform several passes in different planes of incidence. This scheme provides an optimised overlap between the signal passes and the pumped volume. We investigated our amplification geometry with Nd:YAG and Nd:YVO4 crystals: the use of a low-doped (0.3%) Nd:YVO4 crystal allowed better thermal behaviour and higher performance. We amplified a pulsed microlaser (110 mW of average power at 1064 nm) and obtained a diffraction-limited output beam with an average power of 5.7 W for 15 W of pump power and a small-signal gain of 56 dB in a six-pass configuration. Received: 5 March 2002 / Revised version: 6 June 2002 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +33-1/6935-8700, E-mail: Sebastien.forget@iota.u-psud.fr  相似文献   

6.
A compact high power diode-side-pumped Nd:GdVO4 laser has been presented, which can generate an output power of 52 W at 1.063-μm for continuous-wave (CW) operation. The absorption characteristics of the Nd:GdVO4 in different pump directions is measured, which were used to optimize the diode-side-pumped Nd:GdVO4 laser head. The laser characteristics of both CW and Q-switched Nd:GdVO4 and Nd:YAG in are compared and it was found that Nd:GdVO4 may surpass Nd:YAG for high power laser application.  相似文献   

7.
We report the first diode-pumped solid-state laser operating in cw-mode-locked regime and simultaneously achieving intracavity frequency-tripling. This laser provide UV picosecond pulses (λ=355 nm) of 10 ps duration with 0.5 mW average power at 150 MHz repetition rate. A different set of adjustments gave rise to a Q-switched mode-locked regime. Trains of hundred UV pulses of 60 ps duration and 4 W peak power were produced in this latter case at 50 kHz repetition rate. Received: 12 October 1998 / Revised version: 12 December 1998 / Published online: 26 May 1999  相似文献   

8.
We demonstrated a diode-pumped passively mode-locked c-cut Nd:LuVO4 picosecond laser with a semiconductor saturable-absorber mirror (SESAM) at a wavelength of 1067.8 nm. Due to the wide bandwidth of 0.48 nm, stable mode-locking has been generated with a duration as short as 3.7 ps, which is shorter than for the a-cut Nd:LuVO4 laser. A maximum output power of 1.67 W was achieved to give a highest peak power of 3.47 KW at 18 W absorbed pump power.  相似文献   

9.
Passive mode locking of the self-frequency doubling Yb:YAB crystal with a saturable absorber mirror is studied at the fundamental wavelength. This laser has a very low threshold, and pulses as short as 85 and 87 fs are obtained for Ti:sapphire and diode laser pumping, respectively.  相似文献   

10.
A diode-laser-array end-pumped acousto-optically Q-switched intracavity frequency-doubled Nd:GdVO4/KTP green laser, formed with a three-mirror folded resonator, has been demonstrated. With 15 W of pump power incident upon the Nd:GdVO4 crystal, a maximum average green output power of 3.75 W was obtained at 50 kHz of pulse repetition frequency, giving an optical conversion efficiency of 25%, whereas the effective intracavity frequency-doubling efficiency was determined to be 72%. At the incident pump power of 12.8 W, the shortest laser pulse was achieved at a pulse repetition rate of 10 kHz, the resulting pulse width, single pulse energy, and peak power were measured to be 35 ns, 108 μJ, and 3.1 kW, respectively. Received: 18 May 2000 / Published online: 20 September 2000  相似文献   

11.
Highly efficient continuous wave (CW) green beam generation by intracavity frequency doubling of a diode side-pumped Nd:YAG laser using a single pump head based on a copper-coated flow tube in a V-shaped cavity geometry has been demonstrated. A maximum 30.5 W of CW green power was obtained at a total diode pumping power of 260 W corresponding to 11.7% conversion efficiency of diode pump power to CW green power and 4.7% conversion efficiency of electrical power to CW green power. The performance of the laser by considering the pump power induced thermal lensing effect and the M2-parameter at the fundamental wavelength has been analyzed.  相似文献   

12.
4 laser and this produced 1.5-ns pulses of 7 kW peak power at a repetition rate of 20 kHz. Received: 11 May 1998  相似文献   

13.
3+ :Ho3+:YAG laser is operated in active mirror configuration. This laser is characterised by a rather thin crystal (3 mm thickness in our experiment) and a very short resonator (about 3.2 mm). Therefore this laser is well suited for operation in a single longitudinal mode. Single-frequency operation is demonstrated with and without an intracavity etalon. It is further shown that single-frequency emission is reached with a stable cw emission. With a slight detuning of the outcoupling mirror, spiking can be achieved, resulting in an emission on different lines. The assignment of the observed laser lines to the known transitions between Stark sublevels of the 5I7 and the 5I8 level is discussed and compared with predictions in the literature. Received: 2 December 1997  相似文献   

14.
We realized an efficient laser diode-pumped Nd:GdVO4 laser with crystals grown by the floating zone method. In the lasing experiment, a slope efficiency of 78% was achieved with a 1 at.% Nd-doped crystal by pumping at 879 nm. Furthermore, excellent pulsed laser operation was demonstrated with the Nd:GdVO4 crystal by using an acousto-optical (AO) Q-switch. A pulse width of 7 ns was observed when the pulse-repetition frequency was 40 kHz. It is the shortest pulse width recorded in the case of the AO Q-switched Nd:GdVO4 laser.  相似文献   

15.
An AlGaInAs quantum-well structure grown on a Fe-doped InP transparent substrate is developed to be a gain medium in a high-peak-power nanosecond laser at 1570 nm. Using an actively Q-witched 1064 nm laser to pump the gain chip, an average output power of 135 mW is generated at a pulse repetition rate of 30 kHz and an average pump power of 1.25 W. At a pulse repetition rate of 20 kHz, the peak output power is up to 290 W at a peak pump power of 2.3 kW.  相似文献   

16.
In this work, we report 1064 nm laser emission in Nd:YVO4 channel waveguides fabricated by carbon implantation. Typical threshold pump powers (∼808 nm) were ≥45 mW. Maximum conversion efficiency was 11.5% (29.6% slope efficiency), and up to 9 mW of signal was delivered. Sample lengths of 4 mm were sufficient to completely absorb the pump power. The special spectral characteristics of this material such as broad absorption band and superior cross sections compared to the YAG crystal makes it suitable for developing compact sources to be integrated in optoelectronic devices.  相似文献   

17.
We have demonstrated a highly efficient, high average output power laser based on the optimized resonator made up of multiple Nd:YAG rods. The laser consists of three groups, each of which contains two rods with one quartz 90° rotator between them. By a desirable design of the resonator, the average output power of 1906W at 1064nm is reached with repetition rate of 1.1kHz. The optical to optical conversion efficiency is up to 50.8% with the pulse width 224μs and it is the highest conversion efficiency of six rods resonator.  相似文献   

18.
A miniature high-coherent diode laser was developed. Optical feedback from a high-Q microsphere resonator was used to narrow the spectrum of the laser, and a nearly half-pitch gradient-index lens served as a coupling element. As estimated from the variation in frequency-tuning range (chirp-reduction factor) the fast line width of the laser was reduced by more than three orders. It is remarkable that the system reveals stable single-mode operation at a relatively high feedback level. A tentative explanation is presented in terms of previously given models. Received: 8 July 2002 / Revised version: 9 March 2003 / Published online: 24 April 2003 RID="*" ID="*"Corresponding author. Fax: +7-095/334-0249, E-mail: vvv@okb.lpi.troitsk.ru  相似文献   

19.
For obtaining the maximal output power, five lasing gas mixtures (CO2, N2, He, Xe and H2) in a sealed-off CO2 laser are optimized by applying a genetic algorithm and solving CO2 laser kinetics equations. A comparison of numerical simulations shows that the optimal pressures of CO2 and N2 are 1.15 Torr and 7.32 Torr, respectively. Accordingly, the maximum laser power of 124 W is obtained by utilizing the optimal gas combination and an optimized resonator with a length of 1.2 m. Received: 14 August 2002 / Published online: 22 January 2003 The project supported by Zhejiang Provincial Natural Science Foundation of China (No. 602098). RID="*" ID="*"Corresponding author. Fax: +86-571/8832-0369, E-mail: chengch@mail.hz.zj.cn  相似文献   

20.
Additive-pulse mode locking of a diode-pumped Nd3+:YVO4 laser   总被引:2,自引:0,他引:2  
We demonstrate self-starting additive-pulse mode locking of a diode-pumped Nd3+:YVO4 laser. Pulse durations of 2.7 ps are measured at a repetition frequency of 90.7 MHz and at an average output power of 1.1 W. This corresponds to a peak power of 4.5 kW. Received: 27 June 2001 / Revised version: 10 October 2001 / Published online: 29 November 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号