首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptide and protein interactions with (lipo)polysaccharides are important in various biological contexts, including lipoprotein deposition at proteoglycan-covered endothelial surfaces in atherosclerosis, lectin functionality, and the interaction of antimicrobial and anti-inflammatory peptides and proteins with (lipo)polysaccharides. The latter of these areas, which is the topic of this review, has attracted considerable interest during the last few years, since antimicrobial peptides may offer novel therapeutic opportunities in an era of growing problems with antibiotic resistance, and persisting problems with both acute and chronic inflammation. In the present overview, physicochemical factors affecting peptide interactions with bacterial (lipo)polysaccharides are discussed, both in solution and at membrane interfaces. In doing so, an attempt is made to illustrate how physicochemical factors affect the antimicrobial and anti-endotoxic functionality of such peptides, and how knowledge on this can be translated into therapeutic opportunities, e.g., in sepsis.  相似文献   

2.
Non-healing wounds cause hundreds of thousands of deaths every year, and result in large costs for society. A key reason for this is the prevalence of challenging bacterial infections, which may dramatically hinder wound healing. With resistance development among bacteria against antibiotics, this situation has deteriorated during the last couple of decades, pointing to an urgent need for new wound treatments. In particular, this applies to wound dressings able to combat bacterial infection locally in wounds and impaired skin, including those formed by bacteria resistant to conventional antibiotics. Within this context, antimicrobial peptides (AMPs) are currently receiving intense interest. AMPs are amphiphilic peptides, frequently net positively charged, and with a sizable fraction of hydrophobic amino acids. Through destabilization of bacterial membranes, neutralization of inflammatory lipopolysaccharides, and other mechanisms, AMPs can be designed for potent antimicrobial effects, also against antibiotics-resistant strains, and to provide immunomodulatory effects while simultaneously displaying low toxicity. While considerable attention has been placed on AMP optimization and clarification of their mode(s)-of-action, much less attention has been paid on efficient AMP delivery. Considering that AMPs are large molecules, net positively charged, amphiphilic, and susceptible to infection-mediated proteolytic degradation, efficient in vivo delivery of such peptides is, however, challenging and delivery systems needed for the realization of AMP-based therapeutics. In the present work, recent developments regarding AMP delivery systems for treatment of wounds and skin infections are discussed, with the aim to link results from physicochemical studies on, e.g., peptide loading/release, membrane interactions, and self-assembly, with those on the biological functional performance of AMP delivery systems in terms of antimicrobial effects, cell toxicity, inflammation, and wound healing.  相似文献   

3.
Antibiotic resistant bacterial strains represent a global health problem with a strong social and economic impact. Thus, there is an urgent need for the development of antibiotics with novel mechanisms of action. There is currently an extensive effort to understand the mode of action of antimicrobial peptides which are considered as one alternative to classical antibiotics. The main advantage of this class of substances, when considering bacterial resistance, is that they rapidly, within minutes, kill bacteria. Antimicrobial peptides can be found in every organism and display a wide spectrum of activity. Hence, the goal is to engineer peptides with an improved therapeutic index, i.e. high efficacy and target specificity. For the rational design of such novel antibiotics it is essential to elucidate the molecular mechanism of action. Biophysical studies have been performed using to a large extent membrane model systems demonstrating that there are distinctive different mechanisms of bacterial killing by antimicrobial peptides. One can distinguish between peptides that permeabilize and/or disrupt the bacterial cell membrane and peptides that translocate through the cell membrane and interact with a cytosolic target. Lantibiotics exhibit specific mechanisms, e.g. binding to lipid II, a precursor of the peptidoglycan layer, either resulting in membrane rupture by pore formation or preventing cell wall biosynthesis. The classical models of membrane perturbation, pore formation and carpet mechanism, are discussed and related to other mechanisms that may lead to membrane dysfunction such as formation of lipid-peptide domains or membrane disruption by formation of non-lamellar phases. Emphasis is on the role of membrane lipid composition in these processes and in the translocation of antimicrobial peptides.  相似文献   

4.
Defensins comprise a potent class of membrane disruptive antimicrobial peptides (AMPs) with well-characterized broad spectrum and selective microbicidal effects. By using high-resolution synchrotron small-angle X-ray scattering to investigate interactions between heterogeneous membranes and members of the defensin subfamilies, α-defensins (Crp-4), β-defensins (HBD-2, HBD-3), and θ-defensins (RTD-1, BTD-7), we show how these peptides all permeabilize model bacterial membranes but not model eukaryotic membranes: defensins selectively generate saddle-splay ("negative Gaussian") membrane curvature in model membranes rich in negative curvature lipids such as those with phosphoethanolamine (PE) headgroups. These results are shown to be consistent with vesicle leakage assays. A mechanism of action based on saddle-splay membrane curvature generation is broadly enabling, because it is a necessary condition for processes such as pore formation, blebbing, budding, and vesicularization, all of which destabilize the barrier function of cell membranes. Importantly, saddle-splay membrane curvature generation places constraints on the amino acid composition of membrane disruptive peptides. For example, we show that the requirement for generating saddle-splay curvature implies that a decrease in arginine content in an AMP can be offset by an increase in both lysine and hydrophobic content. This "design rule" is consistent with the amino acid compositions of 1080 known cationic AMPs.  相似文献   

5.
Alamethicin is a well-studied channel-forming peptide that has a prototypical amphipathic helix structure. It permeabilizes both microbial and mammalian cell membranes, causing loss of membrane polarization and leakage of endogenous contents. Antimicrobial peptide-lipid systems have been studied quite extensively and have led to significant advancements in membrane biophysics. These studies have been performed on lipid bilayers that are generally charged or zwitterionic and restricted to a thickness range of 3-5 nm. Bilayers of amphiphilic diblock copolymers are a relatively new class of membranes that can have significantly different physicochemical properties compared with those of lipid membranes. In particular, they can be made uncharged, nonzwitterionic, and much thicker than their lipid counterparts. In an effort to extend studies of membrane-protein interactions to these synthetic membranes, we have characterized the interactions of alamethicin and several other membrane-active peptides with diblock copolymer bilayers. We find that although alamethicin is too small to span the bilayer, the peptide interacts with, and ruptures, thick polymer membranes.  相似文献   

6.
Host defense peptides (HDPs), part of the innate immune system, selectively target the membranes of bacterial cells over that of host cells. As a result, their antimicrobial properties have been under intense study. Their selectivity strongly depends on the chemical and mostly structural properties of the lipids that make up different cell membranes. The ability to synthesize HDP mimics has recently been demonstrated. To better understand how these HDP mimics interact with bilayer membranes, three homologous antimicrobial oligomers (AMOs) 1-3 with an m-phenylene ethynylene backbone and alkyl amine side chains were studied. Among them, AMO 1 is nonactive, AMO 2 is specifically active, and AMO 3 is nonspecifically active against bacteria over human red blood cells, a standard model for mammalian cells. The interactions of these three AMOs with liposomes having different lipid compositions are characterized in detail using a fluorescent dye leakage assay. AMO 2 and AMO 3 caused more leakage than AMO 1 from bacteria membrane mimic liposomes composed of PE/PG lipids. The use of E. coli lipid vesicles gave the same results. Further changes of the lipid compositions revealed that AMO 2 has selectively higher affinity toward PE/PG and E. coli lipids than PC, PC/PG or PC/PS lipids, the major components of mammalian cell membranes. In contrast, AMO 3 is devoid of this lipid selectivity and interacts with all liposomes with equal ease; AMO 1 remains inactive. These observations suggest that lipid type and structure are more important in determining membrane selectivity than lipid headgroup charges for this series of HDP mimics.  相似文献   

7.
With large current interest in nanomedicine, there has been rapid progress during the last couple of years in the understanding of opportunities offered by advanced materials in diagnostics, drug delivery, functional biomaterials, and biosensors, as well as combinations of these, e.g., theranostics. In the present overview, focus is placed on drug delivery aspects of inorganic nanomaterials, notably as carriers for proteins, peptides, DNA, and siRNA. Throughout, an attempt is made to illustrate how structure and interactions affect loading and release of such biomacromolecular drugs in various inorganic delivery systems, and how this translates into functional advantages.  相似文献   

8.
Cell membranes protect and compartmentalise cells and their organelles. The semi-permeable nature of these membranes controls the exchange of solutes across their structure. Characterising the interaction of small molecules with biological membranes is critical to understanding of physiological processes, drug action and permeation, and many biotechnological applications. This review provides an overview of how molecular simulations are used to study the interaction of small molecules with biological membranes, with a particular focus on the interactions of water, organic compounds, drugs and short peptides with models of plasma cell membrane and stratum corneum lipid bilayers. This review will not delve on other types of membranes which might have different composition and arrangement, such as thylakoid or mitochondrial membranes. The application of unbiased molecular dynamics simulations and enhanced sampling methods such as umbrella sampling, metadynamics and replica exchange are described using key examples. This review demonstrates how state-of-the-art molecular simulations have been used successfully to describe the mechanism of binding and permeation of small molecules with biological membranes, as well as associated changes to the structure and dynamics of these membranes. The review concludes with an outlook on future directions in this field.  相似文献   

9.
Persistent infections are frequently caused by dormant and biofilm-associated bacteria, which often display characteristically slow growth. Antibiotics that require rapid cell growth may be ineffective against these organisms and thus fail to prevent reoccurring infections. In contrast to growth-based antimicrobial agents, membrane-targeting drugs effectively kill slow-growing bacteria. Herein we introduce 2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2-(hydroxymethyl)propane-1,3-diol (DCAP), a potent broad-spectrum antibiotic that reduces the transmembrane potential of Gram-positive and Gram-negative bacteria and causes mislocalization of essential membrane-associated proteins, including MinD and FtsA. Importantly, DCAP kills nutrient-deprived microbes and sterilizes bacterial biofilms. DCAP is lethal against bacterial cells, has no effect on red blood cell membranes, and only decreases the viability of mammalian cells after ≥6 h. We conclude that membrane-active compounds are a promising solution for treating persistent infections. DCAP expands the limited number of compounds in this class of therapeutic small molecules and provides new opportunities for the development of potent broad-spectrum antimicrobial agents.  相似文献   

10.
beta-Peptides are a class of polyamides that have been demonstrated to adopt a variety of helical conformations. Recently, a series of amphiphilic L(+2) helical beta-peptides were designed, which were intended to mimic the overall physicochemical properties of a class of membrane-active antimicrobial peptides, including magainin and cecropin. Although these peptides showed potent antimicrobial activity, they also showed significant activity against human erythrocytes. Operating under the assumption that their lack of specificity arose from excessive hydrophobicity, two additional beta-peptides H-(beta(3)-HAla-beta(3)-HLys-beta(3)-HVal)(n)-NH(2) (n = 4, 5) were designed and synthesized. Both have high antimicrobial activities, but very low hemolytic potencies. The peptides bind in an L(+2) conformation to phospholipid vesicles, inducing leakage of entrapped small molecules. The peptides have a low affinity for membranes consisting of neutral phosphatidylcholine lipids, but bind avidly to vesicles containing 10 mol % of acidic phosphatidylserine lipids. Differences in vesicle leakage kinetics for the two peptides suggest that chain length could affect their mechanisms of disrupting cell membranes. Thus, insights gained from the study of variants of natural alpha-peptides have provided a useful guide for the design of nonnatural antimicrobial beta-peptides.  相似文献   

11.
Thrombospondin-1 (TSP-1) is a protein involved in angiogenesis and tumor metastasis. In a previous study, a tridecapeptide sequence of TSP-1B [KRFKQDGGWSHWG] was synthesized and its biological activity was determined as well as the activity of three related sequences TSPB-(E), TSPB-(S), and TSPB-(Abu)(6). These peptides were tested for activity on the cell growth of three human carcinoma cells lines and only TSPB-(Abu)(6) increased proliferation of MCF7 and HT-29. The main aim of this study was to perform physicochemical measurements, in a comparative way, to determine if the differences in activity could be related to physicochemical properties. Peptides were characterised by HPLC capacity factors, UV, fluorescence, and CD spectra (either in buffer solution or in the presence of lipid vesicles), surface activity, and aggregation. Moreover, the interaction of these peptides with phospholipids was determined through their penetration in monolayers of DPPC, PG, or PS as well as their miscibility in mixed monolayers. Besides, using liposomes as model membranes, the affinity of these peptides for phosphatidylcholine was measured with vesicles labeled with fluorescent markers (TMA-DPH, laurdan, pyrene). Results show that these molecules are highly hydrophilic and their surface activity is low. Mixed monolayers indicate that there is almost no miscibility. Besides, its presence does not modify noticeably the microviscosity of bilayers. Moreover, UV and fluorescence spectra of peptides were not affected by the presence of lipids in the media but CD spectra recorded in TFE/water (1/1) resulted in small changes for TSPB, TSPB-(E), and TSPB-(S) peptides. On the contrary CD spectra of TSPB-(Abu)(6) derivatives were clearly much more sensitive to the polarity of the environment. According to these data the biological activity of peptide with a cyclic aspartimide moiety at position 6 could be related to a specific conformational change in the peptide chain promoted by a hydrophobic membrane-like environment.  相似文献   

12.
Defensins are small basic amphiphilic peptides (up to 5 kDa) that have been shown to be important effector molecules of the innate immune system of animals, plants and fungi. In addition to immune modulatory functions, they have potent direct antimicrobial activity against a broad spectrum of bacteria, fungi and/or viruses, which makes them promising lead compounds for the development of next-generation antiinfectives. The mode of antibiotic action of defensins was long thought to result from electrostatic interaction between the positively charged defensins and negatively charged microbial membranes, followed by unspecific membrane permeabilization or pore-formation. Microbial membranes are more negatively charged than human membranes, which may explain to some extent the specificity of defensin action against microbes and associated low toxicity for the host. However, research during the past decade has demonstrated that defensin activities can be much more targeted and that microbe-specific lipid receptors are involved in the killing activity of various defensins. In this respect, human, fungal and invertebrate defensins have been shown to bind to and sequester the bacterial cell wall building block lipid II, thereby specifically inhibiting cell wall biosynthesis. Moreover, plant and insect defensins were found to interact with fungal sphingolipid receptors, resulting in fungal cell death. This review summarizes the current knowledge on the mode of action and structure of defensins from different kingdoms, with specific emphasis on their interaction with microbial lipid receptors.  相似文献   

13.
The glycosyl carrier lipids, dolichylphosphate (C(95)-P) and undecapreylphosphate (C(55)-P) are key molecular players in the synthesis and translocation of complex glycoconjugates across cell membranes. The molecular mechanism of how these processes occur remains a mystery. Failure to completely catalyze C(95)-P-mediated N-linked protein glycosylation is lethal, as are defects in the C(55)-P-mediated synthesis of bacterial cell surface polymers. Our recent NMR studies have sought to understand the role these "super-lipids" play in biosynthetic and translocation pathways, which are of critical importance to problems in human biology and molecular medicine. The PIs can alter membrane structure by inducing in the lamellar phospholipids (PL) bilayer a non-lamellar or hexagonal (Hex(II)) structure. Membrane proteins that bind PIs contain a transmembrane binding motif, designated a PI recognition sequence (PIRS). Herein we review our recent combination of (1)H- and (31)P NMR spectroscopy and energy minimized molecular modeling studies that have determined the preferred orientation of PIs in model phospholipids membranes. They also show that the addition of a PIRS peptide to nonlamellar membranes induced by the PIs can reverse the Hex(II) phase back to a lamellar structure. Our molecular modeling calculations have also shown that as many as five PIRS peptides can bind to a single PI molecule. These findings lead to the hypothesis that the PI-induced Hex(II) structure may have the potential of forming a membrane channel that could facilitate glycoconjugate translocation processes. This is an alternate hypothesis to the possible existence of hypothetical "flippases" to accomplish movement of hydrophilic sugar chains across hydrophobic membranes.  相似文献   

14.
Membrane activity of biomimetic facially amphiphilic antibiotics   总被引:1,自引:0,他引:1  
Membranes are a central feature of all biological systems, and their ability to control many cellular processes is critically important. As a result, a better understanding of how molecules bind to and select between biological membranes is an active area of research. Antimicrobial host defense peptides are known to be membrane-active and, in many cases, exhibit discrimination between prokaryotic and eukaryotic cells. The design of synthetic molecules that capture the biological activity of these natural peptides has been shown. In this report, the interaction between our biomimetic structures and different biological membranes is reported using both model vesicle and in vitro bacterial cell experiments. Compound 1 induces 12% leakage at 20 microg/mL against phosphatidylglycerol (PG)-phosphatidylethanolamine (PE) vesicles vs only 3% leakage at 200 microg/mL against phosphatidyl-L-serine (PS)-phosphatidylcholine (PC) vesicles. Similarly, a 40% reduction in fluorescence is measured in lipid movement experiments for PG-PE compared to 10% for PS-PC at 600 s. A 30 degrees C increase in the phase transition of stearoyl-oleoyl-phosphatidylserine is observed in the presence of 1. These results show that lipid composition is more important for selectivity than overall net charge. Additionally, the overall concentration of a given lipid is another important factor. An effort is made to connect model vesicle studies with in vitro data and naturally occurring lipid compositions.  相似文献   

15.
The unique physical structure of lantibiotics, (e.g. double bonds, thioethers rings, and unusual amino acid residues), makes these antimicrobial peptides highly reactive, and thus different in mode-of-action from clinical antibiotics. Members of the lantibiotic group have been successfully tested against pathogenic organisms for decades. Some lantibiotics have been studied for use in treating skin infections, and several have been characterized for their anti-viral activity. In addition to their antimicrobial capabilities, lantibiotics possess amphiphilic characteristics, making them potentially valuable as emulsifiers in drug formulations. The small size and surface activity of these peptides also may allow them to enhance the transport of therapeutic compounds across cell membranes. Over 30 lantibiotics are presently known, and more are being discovered each year. With the rising incidence of resistant bacteria, lantibiotics offer considerable potential as safe, antimicrobial barriers for use on synthetic material surfaces, as emulsifiers in formulation of hydrophobic drugs, and as absorption promoters for selected compounds across mucosal membranes. The major hindrance to research in this area is that lantibiotics are difficult to obtain. But with improved methods for production and purification of these unusual antimicrobial agents, the promise of cost-effective application of lantibiotics may eventually be realized.  相似文献   

16.
An assemblage nexus of microorganisms enclosed in a composite extracellular polymeric matrix is called as a biofilm. The main factor causing biological fouling, or biofouling, is biofilms. Biofilm-mediated biofouling is a significant detrimental issue in several industries, including the maritime environment, industrial facilities, water treatment facilities, and medical implants. Conventional antibacterial remedies cannot wholly eradicate bacterial species owing to the structural rigidity of biofilm and the eventual growth of antibiotic-resistant microorganisms. Consequently, several approaches to disrupt the biofilm have been investigated to address this particular phenomenon. Antimicrobial peptides (AMPs) have emerged as a promising contender in this category, offering several advantages over traditional solutions, including broad-spectrum action and lack of antibiotic resistance. Because biofouling significantly impacts the marine industry, AMPs derived from marine sources may be suitable natural inhibitors of bacterial proliferation. In this article, we discuss the range of physicochemical and structural diversity and the model of action seen in marine AMPs. This makes them an appealing strategy to mitigate biofilm and biofilm-mediated biofouling. This review also systematically summarizes recent research on marine AMPs from vertebrates and invertebrates and their industrial significance, shedding light on developing even better anti-biofouling materials shortly.  相似文献   

17.
Infections associated with Gram-positive bacteria like S. aureus pose a major threat as these bacteria can develop resistance and thereby limit the applications of antibiotics. Therefore, there is a need for new antibacterials to mitigate these infections. Bacterial membranes present an attractive therapeutic target as these membranes are anionic in nature and have a low chance of developing modifications in their physicochemical features. Antimicrobial peptides (AMPs) can disrupt the microbial membranes via electrostatic interactions, but the poor stability of AMPs halts their clinical translation. Here, we present the synthesis of eight N-methyl benzimidazole substituted cholic acid amphiphiles as antibacterial agents. We screened these novel heterocyclic cholic acid amphiphiles against different pathogens. Among the series, CABI-6 outperformed the other amphiphiles in terms of bactericidal activity against S. aureus. The membrane disruptive property of CABI-6 using a fluorescence-based assay has also been investigated, and it was inferred that CABI-6 can enhance the production of reactive oxygen species. We further demonstrated that CABI-6 can clear the pre-formed biofilms and can mitigate wound infection in murine models.  相似文献   

18.
Works relating to the molecular origin and evolution of life have confirmed that the physical chemistry of living systems is built through a long autocatalytic evolution with the most efficient catalysts and functional structures possible. Consequently, it appeared worthwhile to use biological catalysts and membranes for technological purposes. This approach is improper when attempting to use biological catalysts and membranes as such for fulfilling the functions which they fulfil in vivo, because the physicochemical conditions prevailing in industrial reactors and in biological systems are not identical. Then, it is much more advisable to simulate biological functions, e.g. involving membranes, by transposing the principles ruling them, in properly built artificial catalysts or membranes, with a proper reoptimisation to the conditions prevailing in industrial technologies. Some examples of such simulations of biological membrane functions are given for transposing the primary acts of photosynthesis or saline diffusion to practical purposes. Principles of an industrial programme aimed at developing these opportunities based on a polyvalent production of membranes are reviewed.  相似文献   

19.
Organic–inorganic hybrid membranes of poly(vinylidene fluoride)–cohexafluoropropylene (PVdF–HFP) and mesostructured silica containing sulfonic acid groups were synthesized by using the sol‐gel process. These hybrid membranes were prepared by in situ co‐condensation of tetraethoxysilane and an organically modified silane (ormosil) by a self‐assembly route using organic surfactants as templates for tuning the architecture of the hybrid organosilica component. In this paper, we describe the elaboration and characterization of hybrid membranes all the way from the precursor solution to the evaluation of the fuel cell performances. These hybrid materials were extensively characterized by using NMR and IR spectroscopy, electron microscopy, or impedance spectroscopy so as to determinate their physicochemical and electrochemical properties. Even though the ion‐exchange capacity (IEC) was quite weak, the first fuel cell tests performed with these hybrid membranes show promising results relative to optimized Nafion 112 thanks to great water management of the silica inside the hydrophobic polymer.  相似文献   

20.
Cancer is a major cause of premature death and there is an urgent need for new anticancer agents with novel mechanisms of action. Here we review recent studies on a group of peptides that show much promise in this regard, exemplified by arthropod cecropins and amphibian magainins and aureins. These molecules are alpha-helical defence peptides, which show potent anticancer activity (alpha-ACPs) in addition to their established roles as antimicrobial factors and modulators of innate immune systems. Generally, alpha-ACPs exhibit selectivity for cancer and microbial cells primarily due to their elevated levels of negative membrane surface charge as compared to non-cancerous eukaryotic cells. The anticancer activity of alpha-ACPs normally occurs at micromolar levels but is not accompanied by significant levels of haemolysis or toxicity to other mammalian cells. Structure/function studies have established that architectural features of alpha-ACPs such as amphiphilicty levels and hydrophobic arc size are of major importance to the ability of these peptides to invade cancer cell membranes. In the vast majority of cases the mechanisms underlying such killing involves disruption of mitochondrial membrane integrity and/or that of the plasma membrane of the target tumour cells. Moreover, these mechanisms do not appear to proceed via receptor-mediated routes but are thought to be effected in most cases by the carpet/toroidal pore model and variants. Usually, these membrane interactions lead to loss of membrane integrity and cell death utilising apoptic and necrotic pathways. It is concluded that that alpha-ACPs are major contenders in the search for new anticancer drugs, underlined by the fact that a number of these peptides have been patented in this capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号