首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用测量接触角和观测偏光显微镜对超疏水表面在冷凝条件下的疏水特性进行了研究, 发现冷凝蒸汽进入超疏水表面的微凸起内冷凝, 表面的疏水特性被破坏, 表面的润湿特性变得不均匀, 部分区域甚至呈现亲水状态. 根据实验结果提出了冷凝条件下粗糙表面表观接触角的计算模型, 并使用冷凝条件下表面接触角的测量结果进行了验证.  相似文献   

2.
Coalescence of a falling droplet with a stationary sessile droplet on a superhydrophobic surface is investigated by a combined experimental and numerical study. In the experiments, the droplet diameter, the impact velocity, and the distance between the impacting droplets were controlled. The evolution of surface shape during the coalescence of two droplets on the superhydrophobic surface is captured using high speed imaging and compared with numerical results. A two-phase volume of fluid (VOF) method is used to determine the dynamics of droplet coalescence, shape evaluation, and contact line movement. The spread length of two coalesced droplets along their original center is also predicted by the model and compared well with the experimental results. The effect of different parameters such as impact velocity, center to center distance, and droplet size on contact time and restitution coefficient are studied and compared to the experimental results. Finally, the wetting and the self-cleaning properties of superhydrophobic surfaces have been investigated. It has been found that impinging water drops with very small amount of kinetic impact energy were able to thoroughly clean these surfaces.  相似文献   

3.
Dynamic effects of bouncing water droplets on superhydrophobic surfaces   总被引:1,自引:0,他引:1  
Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water repellent properties. Superhydrophobic surfaces may be generated by the use of hydrophobic coating, roughness, and air pockets between solid and liquid. Dynamic effects, such as the bouncing of a droplet, can destroy the composite solid-air-liquid interface. The relationship between the impact velocity of a droplet and the geometric parameters affects the transition from the solid-air-liquid interface to the solid-liquid interface. Therefore, it is necessary to study the dynamic effect of droplets under various impact velocities. We studied the dynamic impact behavior of water droplets on micropatterned silicon surfaces with pillars of two different diameters and heights and with varying pitch values. A criterion for the transition from the Cassie and Baxter regime to the Wenzel regime based on the relationship between the impact velocity and the parameter of patterned surfaces is proposed. The trends are explained based on the experimental data and the proposed transition criterion. For comparison, the dynamic impact behavior of water droplets on nanopatterned surfaces was investigated. The wetting behavior under various impact velocities on multiwalled nanotube arrays also was investigated. The physics of wetting phenomena for bouncing water droplet studies here is of fundamental importance in the geometrical design of superhydrophobic surfaces.  相似文献   

4.
We present a lattice Boltzmann solution of the equations of motion describing the spreading of droplets on topologically patterned substrates. We apply it to model superhydrophobic behavior on surfaces covered by an array of micrometer-scale posts. We find that the patterning results in a substantial increase in contact angle, from 110 degrees to 156 degrees. The dynamics of the transition from drops suspended on top of the posts to drops collapsed in the grooves is described.  相似文献   

5.
In the present study, a novel and simple method of obtaining superhydrophobic surface through the migration of organic siloxane segments in the acrylate side chains to the outmost layer and forming the nano-protuberance on the micro-roughness wool fabrics was described. The chemical compositions and morphologies of the untreated/treated fabrics were characterized by the scanning electron microscopy and X-ray photoelectric energy spectroscopy. Meanwhile, the surface hydrophobicity was evaluated by the static contact angle measurement. The scanning electron microscopy photographs showed that the fiber surfaces of the treated fabrics were obviously granulated, and a wax film covered on the fibers could be observed. X-ray photoelectron spectroscopy analyses and static contact angle measurement further testified that the component of the wax was almost siloxane and that the surfaces of the treated fabrics had superhydrophobic property. The above results indicated that this method could be extended to prepare superhydrophobic surfaces by migrating the low-surface-energy matter and fabricating the nanoscale roughness on the micro-roughness material surfaces.  相似文献   

6.
Microtextured superhydrophobic surfaces: a thermodynamic analysis   总被引:1,自引:0,他引:1  
Superhydrophobic surfaces with a contact angle (CA) larger than 150 degrees have recently attracted great interest in both academic research and practical applications due to their water-repellent or self-cleaning properties. However, thermodynamic mechanisms responsible for the effects of various factors such as surface geometry and chemistry, liquids, and environmental sources have not been well understood. In this study, a pillar microtexture, which has been intensively investigated in experiments, is chosen as a typical example and thermodynamically analyzed in detail. To gain a comprehensive insight into superhydrophobic behavior, the roles of pillar height, width and spacing (or roughness and solid fraction), intrinsic CA, drop size, and vibrational energy are systematically investigated. Free energy (FE) and free energy barrier (FEB) are calculated using a simple and robust model. Based on the calculations of FE and FEB, various CAs, including apparent, equilibrium (stable), advancing and receding CAs, and contact angle hysteresis (CAH) can be determined. Especially, the design of practical superhydrophobic surfaces is emphasized in connection with the transition between noncomposite and composite states; a criterion for judging such transition is proposed. The theoretical results are consistent with the Wenzel's and the Cassie's equations for equilibrium CA values and experimental observations. Furthermore, based on these results and the proposed criterion, some general principles to achieve superhydrophobic performance are suggested.  相似文献   

7.
The impact of picoliter-sized water droplets on superhydrophobic CF(4) plasma fluorinated polybutadiene surfaces is investigated with high-speed imaging. Variation of the surface topography by plasmachemical modification enables the dynamics of wetting to be precisely controlled. Final spreading ratios as low as 0.63 can be achieved. A comparison of the maximum spreading ratio and droplet oscillation frequencies to models described in the literature shows that both are found to be much lower than theoretically predicted.  相似文献   

8.
张文婧  王德辉  邓旭 《应用化学》2022,39(1):142-153
在存在一定过冷度或蒸汽过饱和度的条件下,水蒸汽可在固体表面凝结成核.随着过冷度增大,液滴成核半径将随之减小,冷凝液滴的生长融合将无法避免地发生在超疏水表面不可或缺的微/纳米结构内.若液滴不能及时排出,则会滞留在表面结构内并挤出空气,形成局部浸润,导致材料表面的超疏水性能下降或失效,甚至引起泛洪.本文首先总结了表面因冷凝...  相似文献   

9.
10.
由于聚硅烷具有一些特殊的性质及用途,近年来引起了人们的注意。文献报道的多是主链连有烷基、芳基或芳烷基的聚硅烷,而主链连有活性基团的聚硅烷很少。我们曾合成了主链连有硅氢基团的聚硅烷,并研究了其交联反应。通过硅氢键的反应,可在硅一硅主链上引入一些活性基团,赋予聚硅烷新的特性。本文则报道不同反应条件对甲基二氯硅烷缩合的影响。  相似文献   

11.
In order to improve the shortcomings of paper mulch, such as the low water resistance and weather fastness in practical application, the paper mulch with a superhydrophobic structure was prepared by depositing zinc oxide layer and silicon dioxide layer on the surface of paper mulch by the solution impregnation method, the paper mulch surface treatment method is simple and environmentally friendly. The surface chemical composition and surface morphology of paper mulch before and after UV aging were characterized, respectively. The wetting property, bouncing property, and mechanical stability of paper-based film were studied. The results showed that the static contact angle of the superhydrophobic paper mulch was as high as 161.77°, and the average sliding angle was only 3.5°, which also showed excellent droplet bounce performance and mechanical stability. After UV aging experiment, the static contact angle of super-hydrophobic paper mulch was increased to 163.64°, and the sliding angle was reduced to 2.5°. Its excellent performance could still be maintained, showing excellent UV resistance, which improved the weather fastness and water resistance of paper mulch to a certain extent, and laid a foundation for the next large-scale field test.  相似文献   

12.
含席夫碱双环氮杂锡氧烷配合物的结构与VB6酶体系结构相似。以含席夫碱二苯基锡配合物(PhSnL1H)为研究对象,测定了二苯基锡配合物(PhSnL1H)在DMSO中的pKa(17.60),同时研究了该配合物与醛的缩合反应,合成了7种新的含β-羟基-α-氨基酸配体的有机锡配合物(PhSnL1CHOHRⅠ~Ⅶ),并由IR、1HNMR、119SnNMR及元素分析等确定了配合物的结构。  相似文献   

13.
《Comptes Rendus Chimie》2019,22(5):369-372
Pore wetting is undesirable in the membrane gas–liquid separation process as it deteriorates the gas removal flux. To alleviate the affinity of a membrane surface toward a liquid solvent, its hydrophobicity needs to be enhanced. In this study, a superhydrophobic polyvinylidene fluoride-co-hexafluoropropylene membrane was synthesized via a simple and facile nonsolvent-induced phase inversion process. Hydrophobic nano-SiO2 particles were used as solvent additives to improve the wetting resistance of the membrane. The results revealed that blended nano-SiO2 membranes exhibited enhanced surface hydrophobicity in terms of water contact angle. Such improvement was attributed to the enhancement of surface roughness via the formation of hierarchical multilevel protrusions. Besides, the embedment of nanoparticles in polymer spherulitic globules also contributed to the reduction in surface energy of the membrane. As a result, the blended nano-SiO2 membrane achieved superhydrophobicity with a water contact angle of up to 151°.  相似文献   

14.
To study the influence of different concentrations of zinc oxide (ZnO)/silicon dioxide (SiO2) composite coating on hydrophobic property and mechanical stability of paper mulch film, three kinds of ZnO/SiO2 composite coating paper mulch films (2%, 4%, 6%) with different coating substance contents were prepared by brush coating method. Through particle size analysis, contact angle, rolling angle and mechanical stability test, combined with scanning electron microscope, three-dimensional morphology and roughness measuring instrument, the optimal concentration of ZnO/SiO2 composite coated paper mulch film was screened out. Through acid-base salt corrosion test, silver mirror reaction and surface self-cleaning, the optimal concentration of composite coated paper mulch film was compared with the original paper mulch film to prove its excellent chemical stability and hydrophobicity. The results show that the paper mulch film with 4% coating material has excellent hydrophobicity and mechanical stability, can effectively reduce the surface roughness of paper mulch film, and has remarkable effects in resisting acid, alkali and salt and self-cleaning.  相似文献   

15.
StereochemistryofAcetoneCondensationonSolidBaseCatalystsWANGYu-huan;andWANGGuo-jia(DeparlmentofChemistry,JilinUniversity.Chan...  相似文献   

16.
Crystallization of condensation droplets on a liquid surface   总被引:3,自引:0,他引:3  
Highly ordered microporous two-dimensional membranes have been obtained from polymer solutions (Widawski et al. (1994) Nature 369: 397–399). Recently, a mechanism for the formation of such membranes was proposed, involving water vapour condensation (induced by the rapid evaporation of the volatile solvent) onto the surface of solutions and the formation of floating water droplets. Unfortunately, the droplets growth process was not observed, and consequently only qualitative information was reported. In the present paper, results of light-scattering experiments with this system are reported. The formation of water droplets growing at the surface of the solution has been observed and the evolution with time of the mean droplet radius has been found to be described by a power law with an exponent of 1/3, proving that no coalescence processes occur. This particular behaviour is attributed to the precipitation of the polymer at the water/solution interface and to the formation of a mechanically resistant polymer layer encapsulating each droplet. In this way, water droplets behave like solid particles, allowing compact sheets to be formed. The presence of important surface currents is believed to promote the formation of “polycrystal” and “monocrystal” patterns. Received: 4 January 1999 Accepted in revised form: 15 February 1999  相似文献   

17.
In this paper, we report that thin gold films can be prepared on the water/toluene interface by self-assembly of gold nanoparticles (NPs) and fullerene pyridyl derivatives. The assembled films were characterized using UV–vis spectroscopy and transmission electron microscope (TEM). The films show self-repairing and superhydrophobic properties.  相似文献   

18.
The loss of superhydrophobicity due to mechanochemical damage is critical for superhydrophobic surfaces, and rapid self-healing is significant in maintaining surface durability. Herein, a novel, fast, self-healing superhydrophobic sponge capable of all-weather heating was polymerized in an eco-friendly aqueous system and dip-coated using fluorine-free and non-toxic reagents. Benefiting from the photothermal and Joule-heating performance of polyaniline (PANI) and multiwalled carbon nanotubes (MWCNTs), all-weather heating could be achieved. The equilibrium surface temperature (EST) of the as-prepared sponge could rapidly reach 105°C under irradiation of 1.0 kW/m2 for 20 s, and the EST exceeded 120°C with supplementary 18 V treatment. Impressively, after O2 plasma etching for 1 min or after being immersed in hydrogen peroxide (H2O2) solution for 24 h, the water contact angle (WCA) of self-healing superhydrophobic polyurethane (PU) sponge (SHSPS) can be restored to 155°C under simulated sunlight for 2 min because of the rapid migration of low surface energy polydimethylsiloxane (PDMS) chains, which is the fastest recovery achieved to the best of our knowledge. In addition, the modified sponge exhibited a significant antifouling capability for particulate contaminants and organic pollutants, extending service life. Our preliminary results demonstrated that the modified sponge prepared in the current work is fully qualified in multiple applications, including oil-water separation, viscous oil treatment, seawater evaporation and desalination, de-icing, and anti-icing.  相似文献   

19.
Superhydrophobic coatings are one of the recent hot topics in industrial applications as well as academic studies. The mimicking lotus leaves' superhydrophobic properties have been successfully transferred to real-life applications. However, the current preparation methods used to obtain superhydrophobic coatings are still complex, commonly are not transparent and/or not durable.In the present study, a new relatively simple way to prepare superhydrophobic coatings on polymeric films is described. First, superhydrophobic silica microparticles (MPs) were synthesized by fluorination of SiO2 MPs produced by a modified Stöber method. Briefly, tetraethyl orthosilicate was polymerized in an ethanol/water continuous phase under basic conditions, and the resultant SiO2 MPs were dispersed in heptane as a continuous phase and reacted with 1H,1H,2H,2H-perfluorododecyltrichlorosilane (FTS) to yield FTS-SiO2 MPs, which were dried and dispersed in decane. Superhydrophobic thin coatings were then produced by a ‘throwing stones’ sonication technique and deposited onto polycarbonate, polypropylene, polyethylene, and polyurethane films. The coatings are durable, may be transparent, and exhibit self-cleaning properties for the specific practical applications. The MPs and coated polymeric films were characterized by dynamic light scattering, high-resolution scanning electron microscopy, water contact and sliding angle measurements, and infrared and x-ray photoelectron spectroscopy. This ultrasound-assisted coating process may be upscaled and applied to many polymeric films, for instance polymethyl methacrylate, polystyrene, and polyvinyl chloride. Various applications are envisaged, including but not limited to self-cleaning windows, anti-sticking of snow to antennas and windows, solar panels, roof tiles, agricultural applications, corrosion resistance, and anti-biofouling.  相似文献   

20.
Adsorption behavior of urea on silver electrode and the influence of thiourea on its adsorption in sulphuric acid solution were investigated by polarization curves and Surface Enhanced Raman Spectroscopy. Urea was found to undergo a condensation reaction on roughened silver electrode. Biuret was the condensation compound, and was adsorbed in the protonated form on the silver surface. Obvious synergistic mechanism between thiourea and protonated biuret was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号