首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 703 毫秒
1.
Highly liquid repellent surfaces have been obtained by the combination of roughness and hydrophobicity. Studies have reported that the flow over such surfaces exhibits larger boundary slip as compared to the smooth hydrophobic surfaces. However, the surface roughness can also lead to apparent slip. Thus, the effect of the two factors, that is, wettability and roughness, needs to be segregated. In this study, we have measured the slippage of water on rough hydrophilic and hydrophobic surfaces using colloidal probe atomic force microscopy technique (CP‐AFM). Results showed that the effect of surface roughness on the measured slip is dominant over that of wettability. It was also found that slip on surfaces with sparsely distributed asperities is highly local and measurements on various locations give dissimilar results. The results suggested that the main reason of the larger slip, on rough hydrophobic surfaces, is likely to be the roughness and not the hydrophobicity. Moreover, it was also found that the slip does not vary considerably with the increase or decrease in the shear rate. Most likely, this kind of slip phenomena is caused by the apparent decrease of the drag force, because the nanoasperities on the surface restrict the probe from reaching the surface properly. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Nanohydrodynamics: the intrinsic flow boundary condition on smooth surfaces   总被引:2,自引:0,他引:2  
A dynamic surface force apparatus is used to determine the intrinsic flow boundary condition of two simple liquids, water and dodecane, on various smooth surfaces. We demonstrate the impact of experimental errors and data analysis on the accuracy of slip length determination. In all systems investigated, the dissipation is described by a well-defined boundary condition accounting for a whole range of separation, film thickness, and shear rate. A no-slip boundary condition is found in all wetting situations. On strongly hydrophobic surfaces, water undergoes finite slippage that increases with hydrophobicity. We also compare the relative influence of hydrophobicity and liquid viscosity on boundary flow by using water-glycerol mixtures with similar wetting properties.  相似文献   

4.
The properties of solvophobic surfaces in polar liquids are studied by sedimentation experiments as well as by force measurements using a scanning force microscope (SFM). Depending on whether the polar liquid contacts the solvophobic surface under normal air pressure or under vacuum the experimental results are different. Sedimentation velocities of vacuum-contacted solvophobic surfaces are similar to those of solvophilic vacuum- or air-contacted ones. However, for the air-contacted solvophobic surfaces there is a slip boundary condition of the hydrodynamic flow causing a change of the sedimentation velocity of about 20%, and a long-range attraction varying with the polarity of the liquid molecule is observed between them. These effects can be explained by an incomplete air dewetting of the solvophobic surface when brought into contact with the polar liquid at normal air pressure. Copyright 1999 Academic Press.  相似文献   

5.
Our understanding of interfacial phenomena at the surfaces of critical systems, and in particular at the surfaces of critical binary liquid mixtures, has improved significantly in the past decade. There is now substantial agreement between theory and experiment. In this paper we review recent experimental progress, provide a conceptual framework within which the majority of these experiments can now be understood, and discuss critically any remaining unresolved discrepancies between experiments or with theory.  相似文献   

6.
The influence of periodic and random surface textures on the flow structure and effective slip length in Newtonian fluids is investigated by molecular dynamics (MD) simulations. We consider a situation where the typical pattern size is smaller than the channel height and the local boundary conditions at wetting and nonwetting regions are characterized by finite slip lengths. In the case of anisotropic patterns, transverse flow profiles are reported for flows over alternating stripes of different wettability when the shear flow direction is misaligned with respect to the stripe orientation. The angular dependence of the effective slip length obtained from MD simulations is in good agreement with hydrodynamic predictions provided that the stripe width is larger than several molecular diameters. We found that the longitudinal component of the slip velocity along the shear flow direction is proportional to the interfacial diffusion coefficient of fluid monomers in that direction at equilibrium. In case of random textures, the effective slip length and the diffusion coefficient of fluid monomers in the first layer near the heterogeneous surface depend sensitively on the total area of wetting regions.  相似文献   

7.
In the past decade, the slip of simple liquids on solid surfaces has been demonstrated by many groups. However, the slip of liquids on wettable surfaces is heavily debated. Using colloid probe atomic force microscopy (AFM), we found the slip length of di-n-octylphthalate in a symmetric wettable system (silica) to be around 11 nm, which raises the question of what the measured slip length in an asymmetric hydrophilic-hydrophobic system would be. To answer this question, we investigated liquid slip in one symmetric nonwettable system (hydrophobic DCDMS or OTS) and in one asymmetric hydrophilic (silica)-hydrophobic (DCDMS) system by the same method at driving velocities of between 10 and 80 μm/s. The slip results obtained from the three systems are in agreement with each other, and this comparison provides a means to self-assess the accuracy and reproducibility of the measured force curves and the fitted slip length in our systems. Furthermore, this method provides access to reliable values of the actual slip length on any investigated flat surface in an asymmetric system, avoiding the difficulty of preparing a symmetric probe/flat surface system in a colloid probe AFM force measurement.  相似文献   

8.
It is commonly acknowledged that roughness decreases the aptitude of simple liquids to exhibit flow with slip at solid interfaces. Most available studies have, however, been conducted on substrates for which both the surface chemistry and the roughness were varied simultaneously, making it difficult to identify their respective role on wall slip. To overcome this difficulty, we have developed a series of surfaces formed by grafting hyperbranched polymeric nanoparticles on a smooth, dense, self-assembled monolayer of SiH-terminated short poly(dimethylsiloxane) oligomers, allowing us to vary independently the surface density, the height, and the width of the grafted nanoparticles, and thereby the roughness parameters, while keeping similar surface chemistry. On such substrates, the boundary condition for the flow velocity of hexadecane has been characterized through near-field laser velocimetry. We demonstrate that decreasing the wavelength of the roughness at a fixed height strongly decreases slip, while increasing the height of the nanoparticles at a fixed aspect ratio of the roughness also dramatically affects slippage.  相似文献   

9.
Cell organization, proliferation, and differentiation are impacted by diverse cues present in the cellular microenvironment. As a result, the surface of a material plays an important role in cellular function. Synthetic surfaces may be augmented by physical as well as chemical means. In particular, patterning and interfacial gradients may be utilized to mitigate the cellular response. Patterning is advantageous as it affords control over a range of feature sizes from several nanometers to millimeters. Gradients exist in vivo, for instance in stem cell niches, and the ability to create interfacial gradients in vitro can provide valuable insights into the influence of a series of minute surface changes on a single sample. This review focuses on fabrication methods for generating micro‐ and nanoscale surface patterns as well as interfacial gradients, the impact of these surface modifications on the cellular response, and the advantages and challenges of these surfaces in in vitro applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys., 2013  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号