首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The velocity field corresponding to the Rayleigh–Stokes problem for an edge, in an incompressible generalized Oldroyd-B fluid has been established by means of the double Fourier sine and Laplace transforms. The fractional calculus approach is used in the constitutive relationship of the fluid model. The obtained solution, written in terms of the generalized G-functions, is presented as a sum of the Newtonian solution and the corresponding non-Newtonian contribution. The solution for generalized Maxwell fluids, as well as those for ordinary Maxwell and Oldroyd-B fluids, performing the same motion, is obtained as a limiting case of the present solution. This solution can be also specialized to give the similar solution for generalized second grade fluids. However, for simplicity, a new and simpler exact solution is established for these fluids. For β → 1, this last solution reduces to a previous solution obtained by a different technique.   相似文献   

2.
3.
Dissipation, the power due to the shear stress at the wall, the change of kinetic energy with time as well as the boundary layer thickness corresponding to the Rayleigh–Stokes problem for an Oldroyd-B fluid are established. The corresponding expressions of Maxwell, second grade and Newtonian fluids, performing the same motions, are obtained as the limiting cases of our general results. Specific features of the four models are emphasized by means of the asymptotic approximations and graphical representations. It is worth mentioning that in comparison with the Newtonian model, the power of the shear stress at the wall and the dissipation for Oldroyd-B fluids increase while the boundary layer thickness decreases.  相似文献   

4.
5.
6.
We point out that an erroneous derivation in the recent paper [C. Fetecau et al. Energetic balance for the Rayleigh–Stokes problem of an Oldroyd-B fluid, Nonlinear Anal. RWA 12 (2011) 1–13] yields a correct solution by accident. Additionally, a number of misrepresentations and inaccuracies in the latter recent paper are identified, corrected and/or clarified in this Comment. Finally, a listing of recent papers in this journal in which a mistake occurs while applying the Fourier sine transform, and thus present erroneous solutions, is given as an Appendix.  相似文献   

7.
8.
The generalized Riemann problem for a scalar Chapman–Jouguet combustion model in a neighborhood of the origin (t > 0) on the (x, t) plane is studied. Under the entropy conditions, we obtain the solutions constructively. It is found that, for some cases, the perturbed Riemann solutions are essentially different from the corresponding Riemann solutions. The perturbation may transform a combustion wave CJDT into SDT in the neighborhood of the origin. Especially, it can be observed that burning happens although the corresponding Riemann solution doesn’t contain combustion waves, which exhibits the instability for unburnt states. This work is supported by NSFC 10671120  相似文献   

9.
In this paper, based on the second-order compact approximation of first-order derivative, the numerical algorithm with second-order temporal accuracy and fourth-order spatial accuracy is developed to solve the Stokes’ first problem for a heated generalized second grade fluid with fractional derivative; the solvability, convergence, and stability of the numerical algorithm are analyzed in detail by algebraic theory and Fourier analysis, respectively; the numerical experiment support our theoretical analysis results.  相似文献   

10.
It is well known that for the classical Navier–Stokes problem the best one can obtain is some decays in time of power type. With this in mind, we consider in this work, the classical Navier–Stokes problem modified by introducing, in the momentum equation, the absorption term |u|σ?2 u, where σ > 1. For the obtained problem, we prove the existence of weak solutions for any dimension N ≥ 2 and its uniqueness for N = 2. Then we prove that, for zero body forces, the weak solutions extinct in a finite time if 1 < σ < 2 and exponentially decay in time if σ = 2. In the special case of a suitable force field which vanishes at some instant, we prove that the weak solutions extinct at the same instant provided 1 < σ < 2. We also prove that for non-zero body forces decaying at a power-time rate, the solutions decay at analogous power-time rates if σ > 2. Finally, we prove that for a general non-zero body force, the weak solutions exponentially decay in time for any σ > 1.  相似文献   

11.
12.
13.
In this paper, we discuss a generalized Camassa–Holm equation whose solutions are velocity potentials of the classical Camassa–Holm equation. By exploiting the connection between these two equations, we first establish the local well-posedness of the new equation in the Besov spaces and deduce several blow-up criteria and blow-up results. Then, we investigate the existence of global strong solutions and present a class of cuspon weak solutions for the new equation.  相似文献   

14.
15.
A Laguerre–Galerkin method is proposed and analyzed for Quasilinear parabolic differential equation which arises from Stokes’ first problem for a third-grade fluid on a semi-infinite interval. By reformulating this equation with suitable functional transforms, it is shown that the Laguerre–Galerkin approximations are convergent on a semi-infinite interval with spectral accuracy. An efficient and accurate algorithm based on the Laguerre–Galerkin approximations to the transformed equations is developed and implemented. Effects of non-Newtonian parameters on the flow phenomena are analyzed and documented.  相似文献   

16.
In this paper, we propose an imaging technique for the detection of porous inclusions in a stationary flow governed by Stokes–Brinkmann equations. We introduce the velocity method to perform the shape deformation, and derive the structure of shape gradient for the cost functional based on the continuous adjoint method and the function space parametrization technique. Moreover, we present a gradient-type algorithm to the shape inverse problem. The numerical results demonstrate the proposed algorithm is feasible and effective for the quite high Reynolds numbers problems.  相似文献   

17.
Consider the stationary Navier–Stokes equations in an exterior domain $\varOmega \subset \mathbb{R }^3 $ with smooth boundary. For every prescribed constant vector $u_{\infty } \ne 0$ and every external force $f \in \dot{H}_2^{-1} (\varOmega )$ , Leray (J. Math. Pures. Appl., 9:1–82, 1933) constructed a weak solution $u $ with $\nabla u \in L_2 (\varOmega )$ and $u - u_{\infty } \in L_6(\varOmega )$ . Here $\dot{H}^{-1}_2 (\varOmega )$ denotes the dual space of the homogeneous Sobolev space $\dot{H}^1_{2}(\varOmega ) $ . We prove that the weak solution $u$ fulfills the additional regularity property $u- u_{\infty } \in L_4(\varOmega )$ and $u_\infty \cdot \nabla u \in \dot{H}_2^{-1} (\varOmega )$ without any restriction on $f$ except for $f \in \dot{H}_2^{-1} (\varOmega )$ . As a consequence, it turns out that every weak solution necessarily satisfies the generalized energy equality. Moreover, we obtain a sharp a priori estimate and uniqueness result for weak solutions assuming only that $\Vert f\Vert _{\dot{H}^{-1}_2(\varOmega )}$ and $|u_{\infty }|$ are suitably small. Our results give final affirmative answers to open questions left by Leray (J. Math. Pures. Appl., 9:1–82, 1933) about energy equality and uniqueness of weak solutions. Finally we investigate the convergence of weak solutions as $u_{\infty } \rightarrow 0$ in the strong norm topology, while the limiting weak solution exhibits a completely different behavior from that in the case $u_{\infty } \ne 0$ .  相似文献   

18.
19.
20.
We consider the Cauchy problem for the generalized Zakharov–Kuznetsov equation ?tu+?x1Δu=?x1(um+1) on three and higher dimensions. We mainly study the local well-posedness and the small data global well-posedness in the modulation space M2,10(Rn) for m4 and n3. We also investigate the quartic case, i.e., m=3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号