首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molar heat capacity of Pb4V2O9 and Pb8V2O13 in the temperature range 350–1000 K was measured by differential scanning calorimetry. It was determined that the plot Cp = f(T) for Pb8V2O13 has an extremum within the range 416–516 K, which is due to a phase transition. A correlation was found between the heat capacity and composition of oxides in the PbO–V2O5 system. The data obtained allowed one to predict the specific heat capacity value for Pb(VO3)2.  相似文献   

2.
Thermal stabilities of layered perovskite-like oxides NaNdTiO4 and Na2Nd2Ti3O10 were studied in the temperature ranges from 780 to 1100°C and from 1100 to 1400°C, respectively. Chemical mechanism of their thermal decomposition was proposed. Higher thermal stability of Na2Nd2Ti3O10 was rationalized on the basis of crystallochemical data.  相似文献   

3.
A physicochemical study of glasses based on the MO-Bi2O3-B2O3 and SrO-Bi2O3-B2O3 systems was performed. Glass formation regions were found. The structural and optical properties, as well as the thermal behavior of the glasses, were studied.  相似文献   

4.
The TlAs2Se4-Tl3As2S3Se3 system was investigated by physicochemical methods (DTA, X-ray powder diffraction, microstructural analysis), and its phase diagram was constructed. The TlAs2Se4-Tl3As2S3Se3 join is a quasi-binary internal section of the As-Tl-S-Se quaternary system. The solubility range of TlAs2Se4-based solid solutions is extended to 7 mol %, and the region of Tl3As2S3Se3-based solid solutions is extended to 15 mol %.  相似文献   

5.
The new phosphate Cs2Mn0.5Zr1.5(PO4)3 was synthesized for the first time and characterized by X-ray diffraction. Its crystal structure was refined in space group P213, Z = 4 at 25°C (a = 10.3163(1) Å, V = 1097.93(1) Å3), by the Rietveld method using the powder X-ray diffraction data. The structure is built of an octahedral-tetrahedral framework {[Mn0.5Zr1.5(PO4)3]2?}3∞ with cesium atoms being located in large cavities. The hydrolytic stability of the powdered phosphate containing 137Cs radionuclide was studied. The minimum achieved 137Cs leaching rate was 4 × 10?8 g/cm2 day.  相似文献   

6.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

7.
Summary Specific heats on the single crystals of Sr2Nb2O7, Sr2Ta2O7 and (Sr1-xBax)2Nb2O7 were measured in a wide temperature range of 2-600 K. Heat anomalies of a λ-type were observed at the incommensurate phase transition of TINC (=495 K) on Sr2Nb2O7 and at the super-lattice phase transition of TSL (=443 K) on Sr2Ta2O7; the transition enthalpies and the transition entropies were estimated. Furthermore, a small heat anomaly was observed at the low temperature ferroelectric phase transition of TLOW (=95 K) on Sr2Nb2O7. The transition temperature TLOW decreases with increasing Ba content x and it vanishes for samples of x>2%.  相似文献   

8.
The phase diagrams of the systems KF-K2TaF7 and KF-Ta2O5 were determined using the thermal analysis method. The phase diagrams were described by suitable thermodynamic model. In the system KF-K2TaF7 eutectic points at x KF=0.716 and t=725.4°C and at x KF=0.214 and t=712.2°C has been calculated. It was suggested that K2TaF7 melts incongruently at around 743°C forming two immiscible liquids. The system KF-Ta2O5 have been measured up to 8 mol% of Ta2O5. The eutectic point was estimated to be at x KF∼0.9 and t∼816°C. The formation of KTaO3 and K3TaO2F4 compounds has been observed in the solidified samples.  相似文献   

9.
The possibility of synthesizing complex sulfide phases in the BaSm2S4-Tm2S3 system has been studied. Tm2S3 solid solutions were obtained with BaSm2S4 (CaFe2O4 structural type). The samples were identified by X-ray diffraction analysis and electron microscopy. The range of the solid solutions was determined. The total conductance was studied, and the conductance activation energy was calculated for samples with different dopant contents. The electrolytic properties of basic ternary sulfide and complex sulfide phases in the BaSm2S4-x mol % Tm2S3 system were investigated. A possible mechanism of defect formation was proposed.  相似文献   

10.
In this paper, magnetic chitosan microspheres were prepared by the emulsification cross-linking technique, with glutaraldehyde as the cross-linking agent, liquid paraffin as the dispersant, and the Span-80 as emulsifier. The time of cross-linking and the ratio of Co0.5Ni0.5Fe2O4/chitosan were investigated. The morphology was studied by different instruments. The adsorption performance was investigated and the effects of initial concentration of methyl orange, the time of cross-linking, and the amount of adsorbent were discussed. It is found that the product has uniform morphology when the ratio of magnetic Co0.5Ni0.5Fe2O4/chitosan is 1 : 2 and the time of cross-linking is 5 h; At room temperature, magnetic Co0.5Ni0.5Fe2O4–chitosan has a good adsorption toward methyl orange when the magnetic Co0.5Ni0.5Fe2O4/chitosan dosage is 20 mg.  相似文献   

11.
Cobalt zinc ferrite, Co0.8Zn0.2Fe2O4, nanoparticles have been synthesized via autocatalytic decomposition of the precursor, cobalt zinc ferrous fumarato hydrazinate. The X-ray powder diffraction of the ‘as prepared’ oxide confirms the formation of single phase nanocrystalline cobalt zinc ferrite nanoparticles. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been determined as Co0.8Zn0.2Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ‘as-prepared oxide’ was determined by AC susceptibility measurements.  相似文献   

12.
The temperature dependence of unit cell parameters for monoclinic KPb2Cl5 and tetragonal RbPb2Br5 crystals was studied in the range of 100–298 K. Linear and volume thermal expansion coefficients were determined.  相似文献   

13.
The accuracy of various computational methods (Hartree–Fock, MP2, CCSD, CAS-SCF, and several types of DFT) for predicting relative intensities in Raman spectra for C6H6, C6D6, and C6F6 was compared. The predicted relative intensities for ν1 and ν2 were compared with relative intensities measured by an FT-Raman spectrometer. While none of these methods excelled at this prediction, Hartree–Fock with a large basis set was most successful for C6H6 and C6D6, while PW91PW91 was the most successful for C6F6.  相似文献   

14.
Intermetallic compounds Al13Co4, Al13Fe4, and Al13Co2Fe2 were obtained by solid-phase synthesis in air at temperatures below 600°C using precursor metals subjected to mechanochemical preactivation. The phase composition of the synthesized aluminides and composites Al13Co4/SiO2 and Al13Fe4/SiO2 was analyzed.  相似文献   

15.
Mechanism by which nanocrystalline Bi4Ti3O12 is formed in thermal treatment of coprecipitated hydroxides was studied. It was shown that the onset of the active formation is correlated with the melting point of the surface phase based on bismuth oxide. The technological synthesis parameters of Bi4Ti3O12, at which crystallite sizes in the range 35–60 nm are provided, were determined.  相似文献   

16.
Summary The phase diagram of the mixed crystal (K1-xRbx)2SeO4 was determined by means of thermal analysis and neutron scattering experiments. The hexagonal to orthorhombic phase transition line exists for any x. The normal-incommensurate phase transition temperature decreases continuously with increasing Rb content. However, the incommensurate-commensurate phase transition was not observed except for K2SeO4. According to the clear softening of the Σ2- Σ 3 phonon branches and the finite frequency at 0 K for x>0.34, an existence of the hypothetical phase transition was confirmed.  相似文献   

17.
Erbium stannate Er2Sn2O7 and thulium stannate Tm2Sn2O7 with a pyrochlore-type structure were produced by solid-phase synthesis by calcining stoichiometric mixtures of the respective oxides in air at 1473 K for 240 and 200 h. The high-temperature heat capacity of Er2Sn2O7 and Tm2Sn2O7 was studied by differential thermal calorimetry at 353–1000 K. From the experimental dependences C P = f(T), the thermodynamic functions (enthalpy change, entropy change, and reduced Gibbs free energy) of oxide compounds were calculated.  相似文献   

18.
SnO2/B2O3 samples were produced by a reaction between SnCl4, H3BO3, and (NH2)2CO in a boiling aqueous solution. The Sn: B molar ratio in these samples was 1: 1, 1: 2, and 1: 3. The phase composition and degree of crystallinity of these materials was studied. The surface acidity of the samples was analyzed by the method based on a temperature-programmed reaction of dehydration of 2-methyl-3-butyn-2-ol. Thermal transformations of SnO2/B2O3 samples were examined by means of differential-thermal analysis.  相似文献   

19.
The solubility of YF3, CeF3, PrF3, NdF3, and DyF3 in solutions containing 0–4.496% mol/L (0–35 wt %) of H2SO4 and 0–27.6 g/L of H3PO4 (0–20 g/L of P2O5) at 20 °C was determined. Higher solubility in sulfuric acid solutions compared to that in hydrochloric and phosphoric acid solutions was attributed to the formation of fluorosulfate complexes M2(SO4)F4(M = Y, Ce, Pr, Nd, Dy). The effect of minor concentrations of the phosphate ions on the solubility of YF3, CeF3, PrF3, NdF3, and DyF3 in sulfuric acid solutions and the effect of fluoride ions on the recovery of lanthanides during sulfuric acid leaching from the phosphohemihydrate were discussed.  相似文献   

20.
The influence of the SO42− ion on the temperature and concentration dependences of electric conductivity and the structure of sodium phosphate oxide glasses was studied. The increased electric conductivity of sulfate-phosphate glasses was explained by the formation of mixed sulfate-phosphate fragments with terminal SO42− ions in the structure of glasses in the Na2SO4-NaPO3 system. The dissociation energies of the sodium sulfate fragments are lower than those of pure oxide sodium phosphate structural units. As a result, the number of dissociated sodium ions increases, the activation energy of electric conductivity falls, and the conductivity (at 25°C) increases approximately 270-fold relative to the conductivity of NaPO3. The arrangement of SO42− ions in the structure was evaluated from the IR spectra of the glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号