首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kinetics of the OH-initiated reactions of acetic acid and its deuterated isomers have been investigated performing simulation chamber experiments at T = 300 ± 2 K. The following rate constant values have been obtained (± 1σ, in cm3 molecule−1 s−1): k 1(CH3C(O)OH + OH) = (6.3 ± 0.9) × 10−13, k 2(CH3C(O)OD + OH) = (1.5 ± 0.3) × 10−13, k 3(CD3C(O)OH + OH) = (6.3 ± 0.9) × 10−13, and k 4(CD3C(O)OD + OH) = (0.90 ± 0.1) × 10−13. This study presents the first data on k 2(CH3C(O)OD + OH). Glyoxylic acid has been detected among the products confirming the fate of the CH2C(O)OH radical as suggested by recent theoretical studies.  相似文献   

2.
The kinetics of the peroxy radicals RHFO2 reactions with NO has been studied by using pulse radiolysis and UV absorption spectroscopy. The rate constants of interaction of oxygen atoms with NO − k 2 = 2.2±0.2·10−12 cm3·s−1 and NO2k 3 = 2.1±0.2·10−11 cm3·s−1 were found in agreement with the literature values. The bath gases (SF6 or CO2) have got minor effect on the rate constants of RHFO2+NO→NO2+prod. reactions; RHFO2 = CH3CH2O2, CH3CHFO2, CH3CF2O2, CF3CH2O2, CF3CHFO2. The obtained rate coefficients are in the scope of the literature values, although they are lower than those recommended in NIST database. The reasons are discussed.  相似文献   

3.
The multiple-channel reactions OH + SiH(CH3)3 → products (R1) and the single-channel reaction OH + Si(CH3)4 → Si(CH3)3CH2 + H2O (R2) have been studied by means of the direct dynamics method at the BMC-CCSD//MP2/6-311+G(2d,2p) level. The optimized geometries, frequencies and minimum energy path are all obtained at the MP2/6-311+G(2d,2p) levels, and energy information is further refined by the BMC-CCSD (single-point) level. The rate constants for every reaction channels are calculated by canonical variational transition states theory (CVT) with small-curvature tunneling (SCT) contributions over the temperature range 200–2,000 K. The theoretical total rate constants are in good agreement with the available experimental data, and the three-parameter expression k 1 = 2.53×10−21 T 3.14 exp(1, 352.86/T), k 2 = 6.00 × 10−19 T 2.54 exp(−106.11/T) (in unit of cm3 molecule−1 s−1) over the temperature range 200–2,000 K are given. Our calculations indicate that at the low temperature range, for reaction R1, H-abstraction is favored for the SiH group, while the abstraction from the CH3 group is a minor channel. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The oxidation of N,N-dimethylhydroxylamine (DMHAN) by nitrous acid is investigated in perchloric acid and nitric acid medium, respectively. The effects of H+, DMHAN, ionic strength and temperature on the reaction are studied. The rate equation in perchloric acid medium has been determined to be −d[HNO2]/dt = k[DMHAN][HNO2], where k = 12.8 ± 1.0 (mol/L)−1 min−1 when the temperature is 18.5 °C and the ionic strength is 0.73 mol/L with an activation energy about 41.5 kJ mol−1. The reaction becomes complicated when it is performed in nitric acid medium. When the molarity of HNO3 is higher than 1.0 mol/L, nitrous acid will be produced via the reaction between nitric acid and DMHAN. The reaction products are analyzed and the reaction mechanism is discussed in this paper.  相似文献   

5.
The kinetic data on the molecular oxygen activity of CH3CH·, CH3CF2 · and CF3CHF· radicals are reported. In laboratory, these radicals were generated by pulsed (12 ns) electron beam interaction with the gaseous RHF-O2-CO2 mixtures containing large excess of carbon dioxide (RHF = CH3CH2F, CH3CHF2 or CH2FCF3). The transient product (O3 or RFO2 ·) formation was monitored by the UV absorptions at 250 nm and the rate constants of Reactions (4) and (9) were obtained. The values of k 9 diminished with increasing number of fluorine atoms in RHF molecule. For CH3CH2F and CH3CHF2 the k 9’s were equal to (8.8–10.2)·10−14cm3 ·s−1 and (7.3–8.4)·10−14cm3 ·s−1, respectively, and seem to be determined for the first time. In the case of CH2FCF3 the obtained value of k CF3CHF+O2 = 5.20±0.76·10−14cm3 ·s−1 is much higher than the value published in the literature.4 The other determined rate constant data are comparable to the literature values.  相似文献   

6.
The antioxidant activity of heterocyclic thioamides based on imidazole, triazole, tetrazole, thiazole, thiazoline, and thiadiazole is estimated by spectrophotometry using the rate constant of reaction with the chromogenic radical 2,2′-diphenyl-1-picrylhydrazyl. The rate constant of direct transfer of a hydrogen atom to the radical in carbon tetrachloride is maximal for 1-methylimidazoline-2-thione. The protective antioxidant effect of the preparations in ethanol falls down abruptly from 4-phenylthiazoline-2-thione (k = 1.06 × 104 M−1min−1) to the thioamides based on triazole and thiazoline (k ∼ 20 M−1min−1). In acetonitrile, thiazole derivatives show the most substantial antioxidant activity, k = n ×104 M−1min−1, which goes down to zero if the aromaticity of the heterocycle is broken. As established, for the pseudo first order reaction between thioamides and the chromogenic radical, the reaction rate linearly depends on the concentration of thioamides. A spectrophotometry kinetic method for the quantification of heteroaromatic thioamides is elaborated.  相似文献   

7.
The discharge flow method with laser induced fluorescence detection of CH3O was applied to determine the rate constant, k 1, for the reaction CH3O + HBr → products (1) k 1 (298 K) = (8.41 ± 0.80(1σ)) 1011 cm3 mol-1 s-1. The unusually large k 1 value was explained by the polar nature of the transition state of the reaction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The rate constants of the reactions of the chlorine atom with C3F7I (k 1) and CF3I (k 2) have been measured using the resonance fluorescence of chlorine atoms in a flow reactor at 295 K: k 1 = (5.2 ± 0.3) × 10−12 cm3 molecule−1 s−1 and k 2 = (7.4 ± 0.6) × 10−13 cm3 molecule−1 s−1. No iodine atoms have been detected in the reaction products.  相似文献   

9.
The mechanism and kinetics of the production of hydroxymethyl hydroperoxide (HMHP) in ethene/ ozone/water gas-phase system were investigated at room temperature (298±2 K) and atmospheric pressure (1×105 Pa). The reactants were monitored in situ by long path FTIR spectroscopy. Peroxides were measured by an HPLC post-column fluorescence technique after sampling with a cold trap. The rate constants (k3) of reaction CH2O2 H2O→HMHP (R3) determined by fitting model calculations to ex-perimental data range from (1.6―6.0)×10?17 cm3·molecule?1·s?1. Moreover, a theoretical study of reac-tion (R3) was performed using density functional theory at QCISD(T)/6-311 (2d,2p)//B3LYP/6-311 G(2d, 2p) level of theory. Based on the calculation of the reaction potential energy surface and intrinsic reac-tion coordinates, the classic transitional state theory (TST) derived k3 (kTST), canonical variational tran-sition state theory (CVT) derived k3 (kCVT), and the corrected kCVT with small-curvature tunneling (kCVT/SCT) were calculated using Polyrate Version 8.02 program to be 2.47×10-17, 2.47×10-17 and 5.22×10-17 cm3·molecule-1·s-1, respectively, generally in agreement with those fitted by the model.  相似文献   

10.
Theoretical investigations are carried out on the reaction multi-channel CH3COCH3 + Cl (R1) and CH3 COCH3 + CH3 (R2) by means of direct dynamics methods. The minimum energy path (MEP) is obtained at the MP2/6-31 + G(d,p) level, and energetic information is further refined at the BMC–CCSD (single-point) level. The rate constants are calculated by the improved canonical variational transition state theory (ICVT) with the small-curvature tunneling (SCT) correction in a wide temperature range 200–3,000 K. The theoretical overall rate constants are in good agreement with the available experimental data and are found to be k 1 = 3.08 × 10−17 T 2.03exp(−32.96/T) and k 2 = 1.61 × 10−23 T 3.53 exp(−3969.51/T) cm3molecule−1s−1. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Effect of dicationic gemini surfactants C16H33(CH3)2N+-(CH2) s -N+(CH3)2C16H33, 2Br (where s = 4, 5, 6) on the reaction of ninhydrin with L-isoleucine has been investigated spectrophotometrically as a function of [gemini], [L-isoleucine], [ninhydrin], and pH. The reaction follows first- and fractional-order kinetics, respectively, in [L-isoleucine] and [ninhydrin]. The gemini surfactant micellar media are found more effective for the reaction than their conventional monomeric counterpart CTAB. Furthermore, whereas typical rate constant (k ψ) increase and leveling-off regions are observed with CTAB and geminis, the latter produce a third region of increasing k ψ at concentrations ≥ 60 cmc’s. 1H NMR studies reveal that this unusual third-region effect of the geminis is due to changes in their micellar morphologies. Quantitative kinetic analysis has been performed on the basis of modified pseudo-phase model.  相似文献   

12.
Summary The stoichiometry and kinetics of the oxidation of ethyl-enediaminetetraacetate by [Fe(phen)3]3+, [Fe(bipy)3]3+ and [CoIIIW12O40]5− were studied in aqueous HClO4. Reaction rates were first order with respect to the oxidants and the reductant, and the dependence of the second order rate constant k 2 on [H+] is given by k 2 = a + b[H+ . The primary products were CO2, CH2O and (CH2NH2)2. Schuster treatment is employed to show that the reactions occur by the outersphere mechanism.  相似文献   

13.
The gas‐phase reaction of monomethylhydrazine (CH3NH? NH2; MMH) with ozone was investigated in a flow tube at atmospheric pressure and a temperature of 295 ± 2 K using N2/O2 mixtures (3–30 vol% O2) as the carrier gas. Proton transfer reaction–mass spectrometry (PTR‐MS) and long‐path FT‐IR spectroscopy served as the main analytical techniques. The kinetics of the title reaction was investigated with a relative rate technique yielding kMMH+O3 = (4.3 ± 1.0) × 10?15 cm3 molecule?1 s?1. Methyldiazene (CH3N?NH; MeDia) has been identified as the main product in this reaction system as a result of PTR‐MS analysis. The reactivity of MeDia toward ozone was estimated relative to the reaction of MMH with ozone resulting in kMeDia+O3 = (2.7 ± 1.6) × 10?15 cm3 molecule?1 s?1. OH radicals were followed indirectly by phenol formation from the reaction of OH radicals with benzene. Increasing OH radical yields with increasing MMH conversion have been observed pointing to the importance of secondary processes for OH radical generation. Generally, the detected OH radical yields were definitely smaller than thought so far. The results of this study do not support the mechanism of OH radical formation from the reaction of MMH with ozone as proposed in the literature.  相似文献   

14.
The kinetics of oxidation of phenyldiethanolamine (PEA) by a silver(III) complex anion, [Ag(HIO6)2]5−, has been studied in an aqueous alkaline medium by conventional spectrophotometry. The main oxidation product of PEA has been identified as formaldehyde. In the temperature range 20.0–40.0 °C , through analyzing influences of [OH] and [IO 4 ]tot on the reaction, it is pseudo-first-order in Ag(III) disappearance with a rate expression: k obsd = (k 1 + k 2[OH]) K 1 K 2[PEA]/{f([OH])[IO 4 ]tot + K 1 + K 1 K 2 [PEA]}, where k 1 = (0.61 ± 0.02) × 10−2 s−1, k2 = (0.049 ± 0.002) M−1 s−1 at 25.0 °C and ionic strength of 0.30 M. Activation parameters associated with k 1 and k 2 have also been derived. A reaction mechanism is proposed involving two pre-equilibria, leading to formation of an Ag(III)-periodato-PEA ternary complex. The ternary complex undergoes a two-electron transfer from the coordination PEA to the metal center via two parallel pathways: one pathway is spontaneous and the other is assisted by a hydroxide ion.  相似文献   

15.
Summary Pulsed laser photolysis coupled with time-resolved UV-absorption monitoring of CH3COradicals was applied to obtain the rate constant, k1, for the reaction CH3CO+ HBr → CH3C(O)H + Br (1); k1(298 K) = (3.59 ± 0.23 (2σ))x10-12cm3molecule-1s-1. Utilization of k1in a third law procedure has provided the standard enthalpy of formation value ofDfH°298(CH3CO) = -10.04 ± 1.10 (2σ) kJ mol-1in excellent agreement with a very recent IUPAC recommendation.  相似文献   

16.
The kinetics of the electron-transfer reactions between promazine (ptz) and [Co(en)2(H2O)2]3+ in CF3SO3H solution ([CoIII] = (2–6) × 10−3 m, [ptz] = 2.5 × 10−4 m, [H+] = 0.02 − 0.05 m, I = 0.1 m (H+, K+, CF3SO 3 ), T = 288–308 K) and [Co(edta)] in aqueous HCl ([CoIII] = (1 − 4) × 10−3 m, [ptz] = 1 × 10−4 m, [H+] = 0.1 − 0.5 m, I = 1.0 m (H+, Na+, Cl), T = 313 − 333 K) were studied under the condition of excess CoIII using u.v.–vis. spectroscopy. The reactions produce a CoII species and a stable cationic radical. A linear dependence of the pseudo-first-order rate constant (k obs) on [CoIII] with a non-zero intercept was established for both redox processes. The rate of reaction with the [Co(en)2(H2O)2]3+ ion was found to be independent of [H+]. In the case of the [Co(edta)] ion, the k obs dependence on [H+] was linear and the increasing [H+] accelerates the rate of the outer-sphere electron-transfer reaction. The activation parameters were calculated as follows: ΔH = 105 ± 4 kJ mol−1, ΔS = 93 ± 11 J K−1mol−1 for [Co(en)2(H2O)2]3+; ΔH = 67 ± 9 kJ mol−1, ΔS = − 54 ± 28 J K−1mol−1 for [Co(edta)].  相似文献   

17.
A method for the construction of additive models for calculations of the properties of substitution isomers of basis structures is described for the example of a series of X-substituted methylsilanes CH3 − k X k -SiH3 − l X l (where X = CH3, F, Cl, …, k, l = 0, 1, 2, 3). The method is based on similarity of subgraphs in graphs of several molecules and the arrangement of polygonal numbers (triangular, tetrahedral) of the Pascal triangle. Parameters taking into account multiple nonvalence interactions (-C-Si<, >C-Si<, …) through two atoms along the molecular chain of an X-substituted methylsilane (X = CH3) were for the first time explicitly included in the calculation scheme. Taking these interactions into account allows us to completely differentiate all the structural isomers of certain molecules and obtain numerical parameter values for predicting properties P under consideration in various approximations. Numerical calculations of Δf H g,298 Ko were performed for 16 alkylsilanes (as X-substituted methylsilanes), including 7 compounds not studied experimentally.  相似文献   

18.
Theoretical investigations are carried out on the multichannel reactions CH3COCH3 + F (R1) and CH3COCH3 + Br (R2) by means of direct dynamics methods. The minimum energy path (MEP) is obtained at the MP2/6-31 + G(d,p) level, and energetic information is further refined at the MC-QCISD (single-point) level. The rate constants are calculated by the improved canonical variational transition-state theory (ICVT) with the small-curvature tunneling (SCT) contributions in a wide temperature range 200–1,500 K for the title reactions, H-abstraction channel is favored for the two reactions. The theoretical overall rate constants are in good agreement with the available experimental data and are found to be k 1a  = 3.22 × 10−15 T 1.51exp(1,190.91/T) cmmolecule−1 s−1, k 2  = 5.95 × 10−18 T 1.98exp(−4,622.45/T) cmmolecule−1 s−1. Furthermore, the rate constants of reaction Cl + CH3COCH3 (R3) calculated in the other paper are added to discuss the reactivity trend of different halogen reaction with acetone on the rate constants of this class of hydrogen abstraction reactions.  相似文献   

19.
The reaction of the Cr(xx)2(H2O)2 (xx = oxalate, malonate and methylmalonate) complexes with dissolved CO2 was studied by stopped-flow spectrophotometry in the 7 < pH < 9 range and between 20 to 30°C at an ionic strength of 0.5 mol dm−3 (NaCl). Under the experimental conditions the aqua complex ion consists of a pH-dependent mixture of Cr(xx)2(H2O)2 , Cr(xx)2(OH) (H2O)2− and Cr(xx)2(OH)2 3−. The monohydroxo and dihydroxo species undergo CO2 uptake and subsequent intramolecular carbonate ligand chelation independently, at rates which are readily distinguishable and are governed by the uptake rate constants k 1 and k 2 and chelation rate constants k 3 and k 4, respectively. Only the k 1 values for oxalato, malonato and methylmalonato complexes could be calculated; k 1 = 1084 and 1333 and 1650 mol−1 dm3 s−1, respectively. The results obtained were compared with those obtained from other systems that have either cobalt(III), iridium(III) or rhodium(III) as central atoms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The kinetics of hydroquinone-inhibited oxidation of acrylic acid and methyl methacrylate was studied volumetrically by measuring the oxygen uptake in the presence of an initiator (azobisisobutyronitrile) at T = 333 K and P O 2 = 1 and 0.21 atm. The oxidation of acrylic acid inhibited by 4-methoxyphenol was studied under the same conditions for comparison. The rate constants of the reactions of the peroxyl radicals of acrylic acid (∼CH2CH(COOH)O2·) and methyl methacrylate (∼CH2CMe(COOMe)O2·) with hydroquinone (HOC6H4OH) (1.20 × 105 and 7.16 × 104 l mol−1 s−1, respectively) and of the reaction of peroxyl radicals of acrylic acid with 4-methoxyphenol (p-CH3OC6H4OH) (3.25 × 104 l mol−1 s−1) were measured. The stoichiometric inhibition factors f were determined. The reaction between the semiquinone radical and oxygen, O2 + HOC6H4O·, plays an important role, decreasing the factor f and the efficiency of the inhibition effect of hydroquinone. The rate constants of this reaction were calculated from kinetic data: k = 5.72 × 102 (in acrylic acid) and 4.60 × 102 l mol−1 s−1 (in methyl methacrylate).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号