首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starting with Lie's classical theory, we carefully explain the basic notions of the higher symmetries theory for arbitrary systems of partial differential equations as well as the necessary calculation procedures. Roughly speaking, we explain what analogs of higher KdV equations are for an arbitrary system of partial differential equations and also how one can find and use them. The cohomological nature of conservation laws is shown and some basic results are exposed which allow one to calculate, in principle, all conservation laws for a given system of partial differential equations. In particular, it is shown that symmetry and conservation law are, in some sense, the dual conceptions which coincides in the self-dual case, namely, for Euler-Lagrange equations. Training examples are also given.Translated from the Russian by B. A. Kuperschmidt.  相似文献   

2.
We establish global solutions of nonconcave hyperbolic equations with relaxation arising from traffic flow. One of the characteristic fields of the system is neither linearly degenerate nor genuinely nonlinear. Furthermore, there is no dissipative mechanism in the relaxation system. Characteristics travel no faster than traffic. The global existence and uniqueness of the solution to the Cauchy problem are established by means of a finite difference approximation. To deal with the nonconcavity, we use a modified argument of Oleinik (Amer. Math. Soc. Translations 26 (1963) 95). It is also shown that the zero relaxation limit of the solutions exists and is the unique entropy solution of the equilibrium equation.  相似文献   

3.
This is a study of the Euler equations for free surface water waves in the case of varying bathymetry, considering the problem in the shallow water scaling regime. In the case of rapidly varying periodic bottom boundaries this is a problem of homogenization theory. In this setting we derive a new model system of equations, consisting of the classical shallow water equations coupled with nonlocal evolution equations for a periodic corrector term. We also exhibit a new resonance phenomenon between surface waves and a periodic bottom. This resonance, which gives rise to secular growth of surface wave patterns, can be viewed as a nonlinear generalization of the classical Bragg resonance. We justify the derivation of our model with a rigorous mathematical analysis of the scaling limit and the resulting error terms. The principal issue is that the shallow water limit and the homogenization process must be performed simultaneously. Our model equations and the error analysis are valid for both the two- and the three-dimensional physical problems.  相似文献   

4.
The main notions and results which are necessary for finding higher symmetries and conservation laws for general systems of partial differential equations are given. These constitute the starting point for the subsequent papers of this volume. Some problems are also discussed.  相似文献   

5.
A method for computing symmetries and conservation laws of integro-differential equations is proposed. It resides in reducing an integro-differential equation to a system of boundary differential equations and in computing symmetries and conservation laws of this system. A geometry of boundary differential equations is constructed like the differential case. Results of the computation for the Smoluchowski's coagulation equation are given.  相似文献   

6.
We establish temporal decay estimates for weak solutions to the Hall-magnetohydrodynamic equations. With these estimates in hand we obtain algebraic time decay for higher order Sobolev norms of small initial data solutions.  相似文献   

7.
This research was supported in part by NSF grant DMS 91-00674  相似文献   

8.
9.
All the symmetries and conservation laws of Navier-Stokes equations are calculated.  相似文献   

10.
In this paper, we solve the Riemann problem with the initial data containing Dirac delta functions for a class of coupled hyperbolic systems of conservation laws. Under suitably generalized Rankine–Hugoniot relation and entropy condition, the existence and uniqueness of solutions involving delta shock waves are proved. Further, four kinds of different structure for solutions are established uniquely.  相似文献   

11.
3D stochastic Navier-Stokes equations with a suitable nondegenerate noise are considered. Following a method introduced by Da Prato and Debussche, it is proved that every Markov process associated to the equations has a Strong Feller like continuity property with respect to initial conditions. Dedicated to Giuseppe Da Prato on the occasion of his 70th birthday  相似文献   

12.
The theory of coverings over differential equations is exposed which is an adequate language for describing various nonlocal phenomena: nonlocal symmetries and conservation laws, Bäcklund transformations, prolongation structures, etc. A notion of a nonlocal cobweb is introduced which seems quite useful for dealing with nonlocal objects.  相似文献   

13.
We study the Navier-Stokes equations for compressible barotropic fluids in a bounded or unbounded domain Ω of R3. We first prove the local existence of solutions (ρ,u) in C([0,T*]; (ρ +H3(Ω)) × under the assumption that the data satisfies a natural compatibility condition. Then deriving the smoothing effect of the velocity u in t>0, we conclude that (ρ,u) is a classical solution in (0,T**)×Ω for some T** ∈ (0,T*]. For these results, the initial density needs not be bounded below away from zero and may vanish in an open subset (vacuum) of Ω.  相似文献   

14.
15.
In this paper, we study the partial regularity of the general weak solution u∈L∞(0,T;L2(Ω))∩L2(0,T;H1(Ω)) to the Navier-Stokes equations, which include the well-known Leray-Hopf weak solutions. It is shown that there is a absolute constant ε such that for the weak solution u, if either the scaled local Lq(1?q?2) norm of the gradient of the solution, or the scaled local ) norm of u is less than ε, then u is locally bounded. This implies that the one-dimensional Hausdorff measure is zero for the possible singular point set, which extends the corresponding result due to Caffarelli et al. (Comm. Pure Appl. Math. 35 (1982) 717) to more general weak solution.  相似文献   

16.
17.
The Navier problem is to find a solution of the steady-state Navier-Stokes equations such that the normal component of the velocity and a linear combination of the tangential components of the velocity and the traction assume prescribed value a and s at the boundary. If Ω is exterior it is required that the velocity converges to an assigned constant vector u0 at infinity. We prove that a solution exists in a bounded domain provided ‖aL2(∂Ω) is less than a computable positive constant and is unique if ‖aW1/2,2(∂Ω)+‖sL2(∂Ω) is suitably small. As far as exterior domains are concerned, we show that a solution exists if ‖aL2(∂Ω)+‖au0nL2(∂Ω) is small.  相似文献   

18.
This work is concerned with the numerical capture of stiff viscous shock solutions of Navier-Stokes equations for complex compressible materials, in the regime of large Reynolds numbers. After [2] and [6], a relevant numerical capture is known to require the satisfaction of an extended set of non classical Rankine-Hugoniot conditions due to the non conservation form of the governing PDE model. Here, we show how to enforce their validity at the discrete level without the need for solving local non linear algebraic problems. Non linearities are bypassed when introducing new averaging techniques which are proved to satisfy all the desirable stability properties when invoking suitable approximate Riemann solutions. A relaxation procedure is proposed to that purpose with the benefit of a fairly simple overall numerical method.  相似文献   

19.
We study the initial-boundary-value problems for multidimensional scalar conservation laws in noncylindrical domains with Lipschitz boundary. We show the existence-uniqueness of this problem for initial-boundary data in L and the flux-function in the class C1. In fact, first considering smooth boundary, we obtain the L1-contraction property, discuss the existence problem and prove it by the Young measures theory. In the end we show how to pass the existence-uniqueness results on to some domains with Lipschitz boundary.  相似文献   

20.
Summary In this article we study a new mixed method for the Stokes and Navier-Stokes equations. The method uses two meshes, one very fine for and a coarser one for . Error estimates show that boundary layers do not require to refine the mesh for the stream function as much as for the vorticity when the Reynolds number is large. We prove estimates and study implementation problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号