首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The combination of gel-based two-dimensional protein separations with protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is the workhorse for the large-scale analyses of proteomes. Such high-throughput proteomic approaches require automation of all post-separation steps and the in-gel digest of proteins especially is often the bottleneck in the protein identification workflow. With the objective of reaching the same high performance of manual low-throughput in-gel digest procedures, we have developed a novel stack-type digestion device and implemented it into a commercially available robotic liquid handling system. This modified system is capable of performing in-gel digest, extraction of proteolytic peptides, and subsequent sample preparation for MALDI-MS without any manual intervention, but with a performance at least identical to manual procedures as indicated on the basis of the sequence coverage obtained by peptide mass fingerprinting. For further refinement of the automated protein identification workflow, we have also developed a motor-operated matrix application device to reproducibly obtain homogenous matrix preparation of high quality. This matrix preparation was found to be suitable for the automated acquisition of both peptide mass fingerprint and fragment ion spectra from the same sample spot, a prerequisite for high confidence protein identifications on the basis of peptide mass and sequence information. Due to the implementation of the stack-type digestion device and the motor-operated matrix application device, the entire platform works in a reliable, cost-effective, and sensitive manner, yielding high confidence protein identifications even for samples in the concentration range of as low as 100 fmol protein per gel plug.   相似文献   

2.
A liquid chromatography–electrospray-tandem mass spectrometry (LC–ESI-MS–MS) method based on the detection of biomarker peptides from allergenic proteins was devised for confirming and quantifying peanut allergens in foods. Peptides obtained from tryptic digestion of Ara h 2 and Ara h 3/4 proteins were identified and characterized by LC–MS and LC–MS–MS with a quadrupole-time of flight mass analyzer. Four peptides were chosen and investigated as biomarkers taking into account their selectivity, the absence of missed cleavages, the uniform distribution in the Ara h 2 and Ara h 3/4 protein isoforms together with their spectral features under ESI-MS–MS conditions, and good repeatability of LC retention time. Because of the different expression levels, the selection of two different allergenic proteins was proved to be useful in the identification and univocal confirmation of the presence of peanuts in foodstuffs. Using rice crispy and chocolate-based snacks as model food matrix, an LC–MS–MS method with triple quadrupole mass analyzer allowed good detection limits to be obtained for Ara h2 (5 μg protein g−1 matrix) and Ara h3/4 (1 μg protein g−1 matrix). Linearity of the method was established in the 10–200 μg g−1 range of peanut proteins in the food matrix investigated. Method selectivity was demonstrated by analyzing tree nuts (almonds, pecan nuts, hazelnuts, walnuts) and food ingredients such as milk, soy beans, chocolate, cornflakes, and rice crispy. Figure ESI-QTOF-MS mass spectrum of Ara h3/4 triptig digest  相似文献   

3.
Natural products are a source of unique chemical entities with specific biological activities of great value to the pharmaceutical industry. However, the determination of unknown structures is usually time consuming and often becomes a bottleneck in the effort to develop natural products into effective drugs. The high-performance features of high magnetic field FTMS have greatly alleviated the structural elucidation bottleneck to meet increasingly shorter discovery timelines for drug candidates based on natural products. The high-performance features of high field FTMS include unsurpassed mass measurement accuracy for elemental formula determination, ultra-high mass resolution for component separation, the ability to perform multiple levels of tandem mass spectrometry for structural elucidation, and moderate sensitivity for limited supply of isolates. A number of applications utilizing these properties of FTMS have been reported recently for the structural elucidation of novel natural product structures originating from terrestrial and marine microorganisms. In this review, FTMS methods and their applications for the structural elucidation and characterization of natural products will be reviewed. Figure Molecular structure and positive ion mode nanoelectrospray FTICR mass spectrum of methylspirastrellolide A (3). The inset shows the isotopic distribution with high abundance of the A + 2 peak, but less than the abundance of the A + 1 peak. The resolved isotopic fine structure of the A + 2 peak reveals the presence of one chlorine atom based on accurate mass assignment and the measured abundance ratio between the resolved 37Cl peak and the monoisotopic peak  相似文献   

4.
Individual transfer ribonucleic acids (tRNAs) in a complex mixture can be identified by the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) detection of their signature digestion products. Signature digestion products are endonuclease digestion products whose mass-to-charge value is unique thus corresponding to only a single tRNA. To improve the effectiveness of this approach, we have expanded the applicable endonucleases and examined the use of multiple endonucleases for tRNA identification. The purine specific endonucleases RNase T1 and RNase TA generate the largest number of predicted signature digestion products. Experimentally, MALDI-MS analysis of endonuclease digests from Escherichia coli and Bacillus subtilis finds that any two endonucleases used in combination increases tRNA identification by about 25% over the number identified with a single endonuclease. Using three endonucleases, RNase T1, RNase A, and RNase TA, further improves the number of tRNAs identified by 10–15% over those found with two endonucleases. Limitations in the MALDI-MS approach for complex mixtures were revealed in this study, suggesting that the direct MALDI-MS analysis of signature digestion products is more effective for organisms having 30 or less unique tRNAs. Figure Signature digestion products for tRNACys  相似文献   

5.
Poly(ethylene glycol) (PEG) is a useful water-soluble polymer that has attracted considerable interest in medical and biological science applications as well as in polymer physics. Through the use of a well-calibrated evaporative light-scattering detector coupled with high performance supercritical fluid chromatography, we are able to determine exactly not only the average mass but also all of the molecular mass fractions of PEG samples needed for certified reference materials issued by the National Metrology Institute of Japan. In addition, experimental uncertainty was determined in accordance with the Guide to the expression of uncertainty in measurement (GUM). This reference material can be used to calibrate measuring instruments, to control measurement precision, and to confirm the validity of measurement methods when determining molecular mass distributions and average molecular masses. Especially, it is suitable for calibration against both masses and intensities for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Figure Comparison between the molecular mass fractions of PEG 1000 before calibration (si) (○) and after calibration (wi) (⧫). The error bar shows the expanded uncertainty of k = 2 of each mass fraction  相似文献   

6.
Bacterial surface-associated proteins play crucial roles in host–pathogen interactions and pathogenesis. The identification of these proteins represents an important goal of bacterial proteomics for vaccine development, but also for environmental concerns such as microbial biosensing. Here, we developed such an approach for Legionella pneumophila, a bacterium that causes severe pneumonia. We propose a complementary strategy consisting of (1) a fluorescent labelling of surface-exposed proteins in parallel with (2) a fractionation of the outer-membrane protein extract. These two distinct protein populations were subsequently separated using two-dimensional gel electrophoresis and characterised by mass spectrometry. Within these populations, we found proteins which were expected for the compartments studied, but also a great number of proteins never experimentally described, and also a non-negligible fraction of proteins never described in these fractions. These data provided new routes of inspection for transport and host recognition for Legionella pneumophila. In addition, these results on the membranome and surfaceome show that Legionella in the stationary phase of growth possesses the major determinants to infect host cells. Figure Electron micrograph of Legionella pneumophila in stationnary phase of growth Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Presented at the Annual French National Symposium on Mass Spectrometry, Electrophoresis and Proteomics, 20–23 September 2007 in Pau, France  相似文献   

7.
Purification methods for proteomics samples are of crucial concern for improving the quality of the sample delivered to the mass spectrometer. They constitute the link between the mass spectrometer and protein processing and peptide isolation steps that usually require solvents, buffers, or detergents completely incompatible with MS-analysis conditions. This work describes three new clean-up procedures using synthetic membranes and polymer media and compares them with standard procedures. The efficiency of each of the purification procedures was studied via application to four standards and two membrane proteins. This work highlights the importance of versatility in sample preparation, especially for MS-based proteomic investigations. Figure PMF spectra obtained after MALDI-TOF measurements of bovine mitochondrial complex III (A) and complex IV (B) in-solution digests, with and without purification  相似文献   

8.
Various toxicological and metabolic interactions have been reported to exist between arsenic and selenium. In the present study, synthetic seleno-arsenic compounds, potentially suitable for probing metabolic interactions between these two elements, were prepared and tentatively characterized by using high-performance liquid chromatography (HPLC)–electrospray tandem mass spectrometry and HPLC–inductively coupled plasma mass spectrometry. In analogy to the recently identified thio-arsenic species, which can be prepared from their corresponding oxo-arsenic species via reaction with H2S, the seleno-arsenic compounds were also derived from oxo-arsenic compounds via reaction with H2Se. Figure H2Se bubbled into solutions containing oxo‐arsenosugars converts them into their seleno‐arsenosugar analogues.  相似文献   

9.
Collision-induced reporter fragmentations of the currently most important covalent peptide modifications as detected by tandem mass spectrometry are summarized. These fragmentations comprise the formation of reporter ions, which are preferentially immonium ions, immonium ion-derived fragments or side chain fragments. In addition, the reporter neutral loss reactions for covalently modified amino acid residues are summarized. For each individual covalent modification which can be recognized by a reporter fragmentation, the accurate mass shift and the gross formula shift of the modified amino acid residue are given. The same set of data is provided for the reporter fragmentations. Finally, an extensive accurate mass and gross formula list is presented as supplementary material, describing mostly regular and modified y1 and dipeptide a and b ions, which are helpful for identification of the peptide ends of covalently modified peptides. Figure When modified peptides are fragmented by collision-induced dissociation in a tandem mass spectrometer, the modification is either lost as part of a charged fragment, so that a reporter ion for the modification is generated or it is lost as part of a neutral fragment, so that a modification-specific reporter neutral loss is observed in the fragment ion spectrum. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Chien-Wen Hung and Andreas Schlosser contributed equally to this work.  相似文献   

10.
Pyochelin is a siderophore and virulence factor common to Burkholderia cepacia and several Pseudomonas strains. It is isolated from bacterial media as a mixture of two epimers, which readily equilibrate in most solvents. Experiments based on high-performance liquid chromatography/electrospray ionization mass spectrometry are reported here, allowing the investigation of the different Fe(III)-chelating properties of pyochelin diastereomers in solution without the need for labourious isolation. It is demonstrated in this study that only one of the two pyochelin diastereomers is able to chelate Fe(III); no Fe(III) complexes of the other diastereomer could be detected. The Fe(III)–pyochelin complex exhibited a 1:1 metal-to-siderophore ratio and no evidence for other stoichiometries was found.   相似文献   

11.
A method based on ICP collision-cell MS detection in capillary HPLC was developed to gain an insight into the purity and identity of selenium-containing proteins separated by 1-D and 2-D electrophoresis. The bands and spots obtained after the separation of water-soluble proteins in selenized yeast were digested with trypsin prior to chromatography. Selenium could be detected down to the subpicogram level. The method, assisted by information obtained by MALDI TOF MS on the 5000 Da cut-off fraction, permitted the purity of bands and spots to be estimated and the efficiency of tryptic digestion and the quantity of selenium present in individual peptides to be evaluated. Owing to the high sensitivity and the lack of matrix suppression effects, the method provided chromatograms with signal-to-noise ratios of 10–1000 in conditions where the common ES Q–TOF MS detection failed.   相似文献   

12.
Using the bottom-up approach and liquid chromatography (LC) in combination with mass spectrometry, the primary structure and sequence microheterogeneity of a plaque-specific anti-β-amyloid (1–17) monoclonal antibody (clone 6E10) was characterized. This study describes the extent of structural information directly attainable by a high-performance LC–tandem mass spectrometric method in combination with both protein database searching and de novo sequence determination. Using trypsin and chymotrypsin for enzymatic digestion, 95% sequence coverage of the light chain and 82% sequence coverage of the heavy chain of the 6E10 antibody were obtained. The primary structure determination of a large number of peptides from the antibody variable regions was obtained through de novo interpretation of the data. In addition, N-terminal truncations of the heavy chain were identified as well as low levels of pyroglutamic acid formation. Surprisingly, pronounced sequence microheterogeneities were determined for the CDR 2 region of the light chain, indicating that changes at the protein level derived from somatic hypermutation of the Ig VL genes in mature B-cells might contribute to unexpected structural diversity. Furthermore, the major glycoforms at the conserved heavy chain N-glycosylation site, Asn-292, were determined to be core-fucosylated, biantennary, complex-type structures containing zero to two galactose residues. Figure Primary structure and sequence microheterogeneities of a β-amyloid plaque-specific monoclonal antibody were identified by high-performance LC-tandem-mass spectrometry. Sequence heterogeneities of the light chain CDR2 reveal unexpected diversity from VL-gene hypermutations. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Liquid chromatography (LC) hyphenated with both elemental and molecular mass spectrometry has been used for Se speciation in Se-enriched garlic. Different species were separated by ion-pair liquid chromatography–inductively coupled plasma mass spectrometry (LC–ICP–MS) after hot-water extraction. They were identified by on-line reversed-phase liquid chromatography–electrospray ionization tandem mass spectrometry (RPLC–ESI–MS–MS). Se-methionine and Se-methylselenocysteine were determined by monitoring their product ions. Another compound, γ-glutamyl-Se-methylselenocysteine, shown to be the most abundant form of Se in the garlic, was determined without any additional sample pre-treatment after extraction and without the need for a synthesized standard. Product ions for this dipeptide were detected by LC–ESI–MS–MS for three isotopes of Se78 Se, 80Se: and 82Se. The method was extended to the species extracted during in-vitro gastrointestinal digestion. Because both Se-methylselenocysteine and γ-glutamyl-Se-methylselenocysteine have anticarcinogenic properties, their extractability and stability during human digestion are very important. Garlic was also treated with saliva, to enable detection and analysis of species extracted during mastication. Detailed information on the extractability of selenium species by both simulated gastric and intestinal fluid are given, and variation of the distribution of Se among the different species with time is discussed. Although the main species in garlic is the dipeptide γ-glutamyl-Se-methylselenocysteine, Se-methylselenocysteine is the main compound present in the extracts after treatment with gastrointestinal fluids. Two more, so far unknown compounds were observed in the chromatogram. The extracted species and their transformations were analysed by combining LC–ICP–MS and LC–ESI–MS–MS. In both the simulated gastric and intestinal digests, Se-methionine, Se-methylselenocysteine, and γ-glutamyl-Se-methylselenocysteine could be determined by LC–ESI–MS–MS by measuring their typical product ions.   相似文献   

14.
Multifunctional ZrO2 nanoparticles (NPs) and ZrO2-SiO2 nanorods (NRs) have been successfully applied as the matrices for cyclodextrins and as affinity probes for enrichment of peptides (leucine-enkephalin, methionine-enkephalin and thiopeptide), phosphopeptides (from tryptic digestion products of β-casein) and phosphoproteins from complex samples (urine and milk) in atmospheric pressure matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and MALDI time-of-flight (TOF) MS. The results show that the ZrO2 NPs and ZrO2-SiO2 NRs can interact with target molecules (cyclodextrins, peptides, and proteins), and the signal intensities of the analytes were significantly improved in MALDI-MS. The maximum signal intensities of the peptides were obtained at pH 4.5 using ZrO2 NPs and ZrO2-SiO2 NRs as affinity probes. The limits of detection of the peptides were found to be 75-105 fmol for atmospheric pressure MALDI-MS and those of the cyclodextrins and β-casein were found to be 7.5-20 and 115-125 fmol, respectively, for MALDI-TOF-MS. In addition, these nanomaterials can be applied as the matrices for the analysis of cyclodextrins in urine samples by MALDI-TOF-MS. ZrO2 NPs and ZrO2-SiO2 NRs efficiently served as electrostatic probes for peptide mixtures and milk proteins because 2–11 times signal enhancement can be achieved compared with use of conventional organic matrices. Moreover, we have successfully demonstrated that the ZrO2 NPs can be effectively applied for enrichment of phosphopeptides from tryptic digestion of β-casein. Comparing ZrO2 NPs with ZrO2-SiO2 NRs, we found that ZrO2 NPs exhibited better affinity towards phosphopeptides than ZrO2-SiO2 NRs. Furthermore, the ZrO2 and ZrO2-SiO2 nanomaterials could be used to concentrate trace amounts of peptides/proteins from aqueous solutions without tedious washing procedures. This approach is a simple, straightforward, separation-and washing-free approach for MALDI-MS analysis of cyclodextrins, peptides, proteins, and tryptic digestion products of phosphoproteins.   相似文献   

15.
4,4′-methylenedianiline (DAPM) is the main building block for production of 4,4′-methylenediphenyldiisocyanate that has been widely used in the manufacturing of polyurethane materials including medical devices. Although it was revealed that damage to biliary epithelial cells of the liver and common bile duct occurred upon acute exposure to DAPM, the exact mechanism of DAPM toxicity is not fully understood. Both phase I and II biotransformations of DAPM, some of which generate reactive intermediates, are characterized in detail by liquid chromatography electrospray tandem mass spectrometry. The two most prominent metabolites found in rat bile (M2 and M7) implicated glutathione, glucuronic acid, and glycine conjugations (phase II) following hydroxylation, and N-oxidation (phase I). Their decomposition pathways, as evidenced by MS n experiments, have been elucidated in detail. Figure Proposed fragmentation pathways of a DAPM metabolite  相似文献   

16.
The spatial distribution and concentration of impurities in metallurgical-grade silicon (MG-Si) samples (97–99% w/w Si) were investigated by use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The spatial resolution (120 μm) and low limits of detection (mg kg−1) for quality assurance of such materials were studied in detail. The volume-dependent precision and accuracy of non-matrix-matched calibration for quantification of minor elements, using NIST SRM 610 (silicate standard), indicates that LA-ICP-MS is well suited to rapid process control of such materials. Quantitative results from LA-ICP-MS were compared with previously reported literature data obtained by use of ICP-OES and rf-GD-OES. In particular, the distribution of element impurities and their relationship to their different segregation coefficients in silicon is demonstrated. Dedicated to Professor Klaus G. Heumann  相似文献   

17.
Numerous protein–polyphenol interactions occur in biological and food domains particularly involving proline-rich proteins, which are representative of the intrinsically unstructured protein group (IUP). Noncovalent protein–ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), which also gives access to ligand binding stoichiometry. Surprisingly, the study of interactions between polyphenolic molecules and proteins is still an area where ESI-MS has poorly benefited, whereas it has been extensively applied to the detection of noncovalent complexes. Electrospray ionization mass spectrometry has been applied to the detection and the characterization of the complexes formed between tannins and a human salivary proline-rich protein (PRP), namely IB5. The study of the complex stability was achieved by low-energy collision-induced dissociation (CID) measurements, which are commonly implemented using triple quadrupole, hybrid quadrupole time-of-flight, or ion trap instruments. Complexes composed of IB5 bound to a model polyphenol EgCG have been detected by ESI-MS and further analyzed by MS/MS. Mild ESI interface conditions allowed us to observe intact noncovalent PRP–tannin complexes with stoichiometries ranging from 1:1 to 1:5. Thus, ESI-MS shows its efficiency for (1) the study of PRP–tannin interactions, (2) the determination of stoichiometry, and (3) the study of complex stability. We were able to establish unambiguously both their stoichiometries and their overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Our results prove that IB5·EgCG complexes are maintained intact in the gas phase.   相似文献   

18.
Glutathione peroxidase (isolated from bovine erythrocytes) and its behaviour during alkylation and enzymatic digestion were studied by various hyphenated techniques: gel electrophoresis–laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS), size-exclusion liquid chromatography–ICP MS, capillary high-performance liquid chromatography (capHPLC)–ICP MS, matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) MS, electrospray MS, and nanoHPLC–electrospray ionization (ESI) MS/MS. ESI TOF MS and MALDI TOF MS allowed the determination of the molecular mass but could not confirm the presence of selenium in the protein. The purity of the protein with respect to selenium species could be evaluated by LA ICP MS and size-exclusion chromatography (SEC)–ICP MS under denaturating and nondenaturating conditions, respectively. SEC–ICP MS and capHPLC–ICP MS turned out to be valuable techniques to study the enzymolysis efficiency, miscleavage and artefact formation during derivatization and tryptic digestion. For the first time the parallel ICP MS and ESI MS/MS data are reported for the selenocysteine-containing peptide extracted from the gel; capHPLC–ICP MS allowed the sensitive detection of the selenopeptide regardless of the matrix and nanoHPLC–electrospray made possible its identification. Figure Eye catching image Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The photodecomposition of imazamox, a herbicide of the imidazolinone family, was investigated in pure water. The main photoproducts from the photolysis were followed over time by liquid chromatography mass spectrometry and structures were proposed from exact mass determinations obtained by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The method comprised exact mass determination with better than 0.2 ppm mass accuracy and a corresponding structural visualization taking care of respective isotopes with an adapted van Krevelen diagram that enabled a systematic approach to the characterisation of the elementary composition of each photoproduct. By taking advantage of the high resolving power of FT-ICR MS to make precise formula assignments, the derived 2D van Krevelen diagram (O/C; H/C; m/z) enabled one to structurally differentiate the formed photoproducts and to propose a degradation pathway for imazamox. Figure Overview of applied method to analyse the photolysis process of imazamox herbicide  相似文献   

20.
A combination of inductively coupled plasma mass spectrometry (ICP-MS) and electrospray ionization mass spectrometry (ESI-MS) was deployed for the metabolite profiling and metabolite identification of a new antituberculosis compound (R207910, also known as TMC207) that is currently in drug development. R207910 contains one bromine atom, allowing the detection by ICP-MS. Fluctuations in the Br sensitivity caused by the HPLC gradient were counteracted by the use of species-unspecific isotope dilution. In order to evaluate the method developed, the results obtained were compared with those acquired via radioactivity detection. HPLC-ESI-MS was used for the structural identification of R207910 and its metabolites. The 79Br/81Br isotope ratio is also valuable in the search for metabolites in the complex background of endogenous compounds obtained using HPLC-ESI-MS analyses. Data-dependent scanning using isotope recognition with an ion trap mass spectrometer or processing of Q-Tof data provides HPLC-ICP-MS-like “bromatograms”. The combination of accurate mass measurements and the fragmentation behavior in the MS2 spectra obtained using the Q-Tof Ultima mass spectrometer or MSn spectra acquired using the LTQ-Orbitrap allowed structural characterization of the main metabolites of R207910 in methanolic dog and rat faeces extracts taken 0–24 h post-dose. Figure Analyses of a rat faeces extract taken 0–24 h post-dose: a HPLC-ICP-MS using isotope dilution, b corresponding Br mass flow chromatogram, c radio-HPLC, d Q-Tof ESI-MS TIC, e Q-Tof ESI-MS bromatogram after Br stripping, f LTQ-Orbitrap ESI-MS2 TIC obtained with isotopic-data-dependent scanning  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号