首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of eicosapentaenoic acid, a polyunsaturated fatty acid belonging to the omega-3 class, with biomembrane models represented by multilamellar or unilamellar vesicles made of dimyristoylphosphatidylcholine was monitored by means of differential scanning calorimetry technique. The calorimetric analysis of vesicle prepared in the presence of increasing molar fraction of eicosapentaenoic acid was carried out to show its maximum interaction with biomembrane models evaluating the effects of eicosapentaenoic acid on the biomembrane models thermotropic parameters (transition temperature and enthalpy variation). Furthermore, in order to detect the influence of the presence of hydrophilic or lipophilic media on the entity of the compound absorption by the biomembrane models, kinetic experiments were carried out.The results indicate that eicosapentaenoic acid strongly interacts with the biomembrane models depressing the transition temperature and the enthalpy variation. Eicosapentaenoic acid is absorbed by the biomembrane models and the absorption is affected by the used medium; in fact a bigger absorption happens in the presence of a lipophilic medium.  相似文献   

2.
A comparative study between the release of Ibuprofen (IBU) from Eudragit RS100® (RS) and RL100® (RL) nanosuspensions as well as the free drug to a biological model membrane, consisting of dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLV), was carried out by DSC technique. The aim was to assess the suitability of such calorimetric technique to determine the kinetics of drug release from a polymer system, compared with a classical release test by dialysis method. Nanosuspensions were prepared by a modification of the quasi-emulsion solvent diffusion technique (QESD), a particular approach to the general solvent-change method. This kind of system was planned for the ophthalmic release of non-steroidal anti-inflammatory drugs in ocular diseases associated with inflammatory processes (i.e. post-cataract surgery or uveitis). The drug release was monitored by differential scanning calorimetry (DSC), following the effects exerted by IBU on the thermotropic behaviour of DMPC multilamellar vesicles. IBU affects the main transition temperature (Tm) of phospholipid vesicles, causing a shift towards lower values, driven by the drug fraction entering the lipid bilayer. The obtained values have been used as a calibration curve. DSC was performed on suspensions of blank liposomes added to fixed amounts of unloaded and IBU-loaded Eudragit RS100® and RL100® nanosuspensions as well as to powdered free drug. The Tm shifts caused by the drug released from the polymer system or by the free drug, during incubation cycles at 37 °C, were compared to the calibration curve in order to obtain the fraction of drug released. The results were also compared with in vitro dialysis release experiments. The suitability of the two different techniques to follow the drug release as well as the differences between the RL and RS polymer systems was compared, confirming the efficacy of DSC for studying the release from polymer nanoparticulate systems. Explanation of the different rate of kinetic release could be due to void liposomes, which represent a better up-taking system than the aqueous solution phase in the dialysis experiments.  相似文献   

3.
The kinetics of the interaction between Gemcitabine (a new anticancer drug) and phospholipid membrane models was investigated. This kind of study is of particular importance both in hypothesizing the interaction of Gemcitabine with mammalian cell membranes and in evaluating the potentiality of liposomes as a Gemcitabine delivery system. Unilamellar (LUV) and multilamellar (MLV) membrane models were made up of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidic acid sodium salt (DMPA), or a DMPC-DMPA mixture (1:1 molar ratio). Gemcitabine-phospholipid vesicle interaction was studied by differential scanning calorimetry (DSC) measurements performed at different time intervals. The findings showed slower permeation kinetics of Gemcitabine through MLV than LUV which, at the same lipid/water ratio, are characterized by a larger lipid surface in contact with the drug aqueous solution. Another interesting difference between LUV and MLV is the onset of a transient two-peak structure during the DSC scans of MLVs. The effect is due to the unequal distribution of the drug between the outer and inner bilayers of the multilamellar vesicles during the permeation kinetics. At equilibrium the two-peak structure merges into a unique peak. This finding may provide useful information about the lipid bilayer permeability in model membranes.  相似文献   

4.
Anti-inflammatory drugs represent a potential new strategy for the treatment of Alzheimer's disease (AD). The ability to cross the blood-brain barrier and to reach brain tissues is a critical point for these drugs and is strictly related to their lipophilicity. Naproxen (NAP) is a non-steroidal anti-inflammatory drug (NSAIDs) under active investigation for AD. To improve its lipophilic character, NAP was conjugated through a diethylamine spacer (EDA) to lipoamino acids (LAA), α-amino acids containing a long alkyl side chain, to obtain the NAP-EDA-LAA10 and NAP-EDA-LAA14 prodrugs. The interaction of NAP and prodrugs with dimyristoylphosphatidylcholine phospholipids, forming either multilamellar vesicles or monolayers (at the air/water interface) and used as biomembrane models, was studied by differential scanning calorimetry and Langmuir-Blodgett techniques. Experimental data showed that NAP conjugation with LAA residues was able to enhance the drug interaction with such biomembrane models.  相似文献   

5.
The present work examines the relationship between the antimicrobial activity of novel arginine-based cationic surfactants and the physicochemical process involved in the perturbation of the cell membrane. To this end, the interaction of these surfactants with two biomembrane models, namely, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) multilamellar lipid vesicles (MLVs) and monolayers of DPPC, 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt (DPPG), and Escherichia coli total lipid extract, was investigated. For the sake of comparison, this study included two commercial antimicrobial agents, hexadecyltrimethylammonium bromide and chlorhexidine dihydrochloride. Changes in the thermotropic phase transition parameters of DPPC MLVs in the presence of the compounds were studied by differential scanning calorimetry analysis. The results show that variations in both the transition temperature (Tm) and the transition width at half-height of the heat absorption peak (deltaT1/2) were consistent with the antimicrobial activity of the compounds. Penetration kinetics and compression isotherm studies performed with DPPC, DPPG, and E. coli total lipid extract monolayers indicated that both steric hindrance effects and electrostatic forces explained the antimicrobial agent-lipid interaction. Overall, in DPPC monolayers single-chain surfactants had the highest penetration capacity, whereas gemini surfactants were the most active in DPPG systems. The compression isotherms showed an expansion of the monolayers compared with that of pure lipids, indicating an insertion of the compounds into the lipid molecules. Owing to their cationic character, they are incorporated better into the negatively charged DPPG than into zwitterionic DPPC lipid monolayers.  相似文献   

6.
Giant liposomes, or giant vesicles, are cell-size (approximately 5-100 microm) compartments enclosed with phospholipid bilayers, and have often been used in biological research. They are usually generated using hydration methods, "electroformation" and "gentle hydration (or natural swelling)", in which dry lamellar films of phospholipids are hydrated with aqueous solutions. In gentle hydration, however, giant liposomes are difficult to prepare from an electrostatically neutral phospholipid because lipid lamellae cannot repel each other. In this study, we demonstrate the efficient formation of giant liposomes using the gentle hydration of neutral phospholipid (dioleoyl phosphatidylcholine, DOPC) dry films doped with nonelectrolytic monosaccharides (glucose, mannose, and fructose). A mixture of DOPC and such a sugar in an organic solvent (chloroform/methanol) was evaporated to form the films, which were then hydrated with distilled water or Tris buffers containing sodium chloride. Under these conditions, giant liposomes spontaneously formed rapidly and assumed a swollen cell-sized spherical shape with low lamellarity, whereas giant liposomes from pure DOPC films had multilamellar lipid layers, miscellaneous shapes and smaller sizes. This observation indicates that giant unilamellar vesicles (GUVs) of DOPC can be obtained efficiently through the gentle hydration of sugar-containing lipid dry films because repulsion between lipid lamellae is enhanced by the osmosis induced by dissolved sugar.  相似文献   

7.
Gemcitabine (dFdC or Gem) is a water-soluble cytotoxic drug, with poor cellular uptake in the absence of a nucleoside transporter. To improve its diffusion through membranes, it was modified by grafting of a squalenoyl moiety. In water, this derivative is able to form stable and monodispersed nanoparticles made of inverse hexagonal phases. The formation and interfacial properties of the squalenoyl gemcitabine (SQ-Gem) nanoparticles, and their ability to interact with phospholipid and cholesterol monolayers modeling a biomembrane, was assessed from surface tension measurements and Brewster angle microscopy. To get a better insight into the mechanisms of SQ-Gem interaction with the various lipids, the interfacial behavior of SQ-Gem and squalene was also studied by surface pressure and surface potential measurements, in the absence and in the presence of phospholipids and cholesterol. The results showed that SQ-Gem nanoparticles adsorbed at the free air/water interface and disrupted to form a monolayer. SQ-Gem molecules released from the adsorbed nanoparticles were also able to penetrate into condensed phospholipid-cholesterol mixed monolayers. The kinetics of this penetration was apparently controlled by intermolecular interactions between the drug and the adsorbed lipids. Whereas distearoylphosphatidylcholine (DSPC) hindered SQ-Gem penetration, cholesterol favored it, which could have important implications in the therapeutic field since cholesterol targeting could alter lipid raft composition and cancer cell survival.  相似文献   

8.
The present study was undertaken to examine the physicochemical properties of three overlapping peptides belonging to the E2 envelope protein of Hepatitis G virus (GBV-C/HGV) and its interaction with phospholipid biomembrane models using biophysical techniques. We describe our findings concerning the surface activity and the interaction of the peptides with monolayers and liposomes composed of the zwitterionic phospholipids dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine (DMPC) and a mixture of DMPC with the anionic phospholipid dimyristoylphosphatidylglycerol. The results inform about the effect of the chain length on their interaction with biomembrane models. The longest chain peptide interacts in a higher extent with all the phospholipid studied as a result of a combination of hydrophobic and electrostatic forces.  相似文献   

9.
A differential scanning calorimetry study was carried out to investigate the effect exerted by immunogenic synthetic lipopeptides obtained by the conjugation of LCMV33–41 peptide with lipoamino acids (Laas) bearing different alkyl chain lengths (C12 and C16) and number of chains (2 × C12) on the thermotropic behaviour of dimyristoylphosphatidylcholine (DMPC) liposomes. The aim of this work was to study the ability of these compounds to be carried by a liposomal system and released to a biomembrane model.

The examined compounds caused variations of the thermotropic parameters that characterise the liposomal system (transition temperature, Tm and enthalpy variation, ΔH), and interacted with the biomembrane models in different way. The interaction was found to be modulated by the length and number of chains present in the examined compounds. In fact, the compounds with higher number of lipid chain showed a stronger interaction with the biomembrane models with respect to the pure peptide and the compounds with a single lipid chain. These results suggest that the lipoamino acid moiety could favour the peptide to be carried by the liposomal system and released to biomembrane.  相似文献   


10.
Hydrazones based on mono- and bicyclic terpenoids (verbenone, menthone and carvone) have been investigated in vitro as potential biomembrane penetration enhancers. In this regard, liposomes composed of lecithin or cardiolipin as phospholipid phase components with incorporated fluorescence probes have been prepared using the thin-film ultrasonic dispersion method. The mean particle size of the obtained liposomes, established using laser diffraction, was found to be 583 ± 0.95 nm, allowing us to categorize them as multilamellar vesicles (MLVs) according to their morphology. Pursuant to fluorescence analysis, we may assume a reduction in microviscosity and, consequently, a decrease in the packing density of lecithin and cardiolipin lipids to be the major mechanism of action for terpenoid hydrazones 1–15. In order to determine the molecular organization of the lipid matrix, lipids were isolated from rat strata cornea (SCs) and their interaction with tested compounds was studied by means of Fourier transform infrared spectroscopy. FT-IR examination suggested that these hydrazones fluidized the SC lipids via the disruption of the hydrogen-bonded network formed by polar groups of SC constituents. The relationship between the structure of terpenoid hydrazones and their ability to enhance biomembrane penetration is discussed.  相似文献   

11.
《Supramolecular Science》1997,4(3-4):479-483
We have recently developed a useful approach to determine the possible desorption of largely insoluble one-component monolayers into the aqueous subphase. In the present paper the underlying theoretical line of reasoning will be extended to the more general case of two-component monolayers. A practical application is demonstrated for the special system of a biomembrane fusion peptide that interacts with a phospholipid monolayer under equilibrium conditions. Through a pertinent evaluation of conventional surface pressure/area data the actual amount of peptide incorporated (relative to the amount of interfacial lipid) and its true molecular area can each be determined individually without additional information. Both quantities are shown to undergo a very pronounced reduction upon raising the lateral pressure from 10 to 25 mNm−1.  相似文献   

12.
Molecular interactions between an anticancer drug, paclitaxel, and phosphatidylcholine (PC) of various chain lengths were investigated in the present work by the Langmuir film balance technique and differential scanning calorimetry (DSC). Both the lipid monolayer at the air-water interface and lipid bilayer vesicles (liposomes) were employed as model biological cell membranes. Measurement and analysis of the surface pressure versus molecular area curves of the mixed monolayers of phospholipids and paclitaxel under various molar ratio showed that phospholipids and paclitaxel formed a nonideal miscible system at the interface. Paclitaxel exerted an area-condensing effect on the lipid monolayer at small molecular surface areas and an area-expanding effect at large molecular areas, which could be explained by the intermolecular forces and geometric accommodation between the two components. Paclitaxel and phospholipids could form thermodynamically stable monolayer systems: the stability increased with the chain length in the order DMPC (C14:0)>DPPC (C16:0)>DSPC (C18:0). Investigation of paclitaxel penetration into the pure lipid monolayer showed that DMPC had a higher ability to incorporate paclitaxel and the critical surface pressure for paclitaxel penetration also increased with the chain length in the order DMPC>DPPC>DSPC. A similar trend was testified by DSC studies on vesicles of the mixed paclitaxel/phospholipids bilayer. Paclitaxel showed the greatest interaction with DMPC while little interaction could be measured in the paclitaxel/DSPC liposomes. Paclitaxel caused broadening of the main phase transition without significant change at the peak melting temperature of the phospholipid bilayers, which demonstrated that paclitaxel was localized in the outer hydrophobic cooperative zone of the bilayer. The interaction between paclitaxel and phospholipid was nonspecific and the dominant factor in this interaction was the van der Waals force or hydrophobic force. As the result of the lower net van der Waals interaction between hydrocarbon chains for the shorter acyl chains, paclitaxel interacted more readily with phospholipids of shorter chain length, which also increased the bilayer intermolecular spacing.  相似文献   

13.
Lipophilic conjugates of the antitumor drug methotrexate (MTX) with lipoamino acids (LAAs) have been previously described as a tool to enhance MTX passive entrance into cells, overcoming a form of transport resistance which makes tumour cells insensitive to the antimetabolite. A knowledge of the mechanisms of interaction of such lipophilic derivatives with cell membranes could be useful for planning further lipophilic MTX derivatives with an optimal antitumour activity. To this aim, a calorimetric study was undertaken using a biomembrane model made from synthetic 1,2-dipalmitoyl-glycero-3-phosphocholine (DPPC) multilamellar liposomes. The effects of MTX and conjugates on the phase transition of liposomes were investigated using differential scanning calorimetry.

The interaction of pure MTX with the liposomes was limited to the outer part of the phospholipid bilayers, due to the polar nature of the drug. Conversely, its lipophilic conjugates showed a hydrophobic kind of interaction, perturbing the packing order of DPPC bilayers. In particular, a reduction of the enthalpy of transition from the gel to the liquid crystal phase of DPPC membranes was observed. Such an effect was related to the structure and mole fraction of the conjugates in the liposomes.

The antitumour activity of MTX conjugates was evaluated against cultures of a CCRF–CEM human leukemic T-cell line and a related MTX resistant sub-line. The in vitro cell growth inhibitory activity was higher for bis(tetradecyl) conjugates than for both the other shorter- and longer-chain derivatives. The biological effectiveness of the various MTX derivatives correlated very well with the thermotropic effects observed on the phase transition of DPPC biomembranes.  相似文献   


14.
The encapsulation of acid (AD) and sodium diclofenac (SD) in small unilamellar liposomes (SUV) as well as the interactions of the drug with the bilayer was studied. SUV was prepared by sonication from multilamellar liposomes containing soya phosphatidylcholine and diclofenac at various proportions. The size distribution obtained from dynamic light scattering showed that the incorporation of SD decreases significantly the size of the liposomes suggesting that the drug interacts with the bilayer of the liposomes. This size decrease is related with the phase transition of liposomes to mixed micelar solution. The encapsulation of the hydrophilic dye indocyanine green in the aqueous compartment of liposomes showed that the rate of captured dye decreases with SD concentration suggesting the transition of liposomes to mixed micelles. The (31)P NMR analysis indicates that SD interacts with the phosphate of phosphatidylcholine head groups. A schematic model for interaction of SD with phosphatidylcholine of the liposomes in which the diclofenac anion interacts with the ammonium group of the phospholipid and the dichlorophenyl ring occupies a more internal site of bilayer near phosphate group was proposed.  相似文献   

15.
15N NMR spectroscopy has been used to investigate liposomes from an enriched phospholipid (dipalmitoyl-phosphatidylcholine). It is shown that this probe can yield interesting information on the dynamics of head groups and on some interactions at the lipid–water interface. Even large multilamellar vesicles give rise to narrow, symmetrical signals, with a maximum nuclear Overhauser effect over the phase transition temperature. The sensitivity of the technique as regards structural changes was demonstrated by a complete study made between 20 and 60°C.  相似文献   

16.
It is known that cyclodextrins (CDs) extract lipid components from bilayer of liposomes. This could undermine the potential benefits of liposomes as drug carriers. In this study, we demonstrated that PC-Chol liposomes with various CDs or rhapontin (Rh)-hydroxypropyl betaCD (HPbetaCD) complexes could be stabilized by association with the amphiphilic polyelectrolyte, poly(methacrylic acid-co-stearyl methacrylate). Based on the results of differential scanning calorimetry, photocorrelation spectroscopy and transmission electron microscopy, the polymer-associated liposomes had the same vesicular form as liposome with clear boundaries and retained structural integrity for at least 1 month. In addition, the polymer-associated structure was unaffected by the type of CD, the composition and concentration of lipid components, and the concentration of the Rh-HPbetaCD complex. This contrasted with PC-Chol liposomes, whose structure was dependent on these factors. Using structurally different polymer-associated liposomes and PC-Chol liposomes containing the Rh-HPbetaCD complex, we also showed that the stability of vesicles could influence the skin permeability of CD-drug complexes.  相似文献   

17.
We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomask to produce periodic arrays of patterned hydrophilic domains separated from hydrophobic surroundings. Exposing these patterned surfaces to a solution of small unilamellar vesicles of phospholipids and their mixtures resulted in a complex lipid layer morphology epitaxially reflecting the underlying pattern of hydrophilicity. The hydrophilic square regions of the photopatterned OTS monolayer reflected lipid bilayer formation, and the hydrophobic OTS residues supported lipid monolayers. We further observed the existence of a boundary region composed of a nonfluid lipid phase and a lipid-free moat at the interface between the lipid monolayer and bilayer morphologies spontaneously corralling the fluid bilayers. The outer-edge of the boundary region was found to be accessible for subsequent adsorption by proteins (e.g., streptavidin and BSA), but the inner-edge closer to the bilayer remained resistant to adsorption by protein or vesicles. Mechanistic implications of our results in terms of the effects of substrate topochemical character are discussed. Furthermore, our results provide a basis for the construction of complex biomembrane models, which exhibit fluidity barriers and differentiate membrane properties based on correspondence between lipid leaflets. We also envisage the use of this construct where two-dimensionally fluid, low-defect lipid layers serve as sacrificial resists for the deposition of protein and other material patterns.  相似文献   

18.
The solubilization kinetics of phospholipid vesicles, about 100 nm in diameter and composed of egg phosphatidylcholine (EPC) and EPC/cholesterol in molar ratio 7/3, by sodium taurocholate (TC) used as a model bile salt were investigated by monitoring the turbidity at 500 nm and by quasielastic light scattering (QELS). The solubilization process was found to be dependent on the rate of TC addition. Although the solubilization profiles were identical whatever the rate of TC addition, an increase in the amount of TC needed to solubilize phosphatidylcholine liposomes was observed at higher rates. These results suggest that at low TC concentrations the permeability of the membrane to taurocholate is the rate-limiting step of the solubilization. In the case of cholesterol-containing vesicles, the effect of the rate of addition of TC was observed only at the solubilization characteristic points, called B and C, corresponding to a sharp decrease in the turbidity. This suggests that cholesterol greatly reduces the permeability of the membrane. In addition, the kinetic process was found to be independent of the micellar concentration of the detergent added to the aqueous medium, indicating that the solubilization of liposomes by TC was independent of the initial state of aggregation of the detergent. The calculated values of lipid/TC aggregates and of the partition coefficient show that the kinetic effect observed at high TC concentrations prior to complete solubilization might also be due to the diffusion of the detergent into the membranes. This gives rise to the differences in composition of the aggregates as a consequence of the variation in the rate of TC addition. In addition, QELS scattered intensity variations confirm the presence of a kinetic process for the solubilization of liposomes by TC. In conclusion, our results suggest that solubilization of lipid vesicles by TC is governed by kinetic parameters that might be controlled by liposome membrane permeability at low TC concentrations and by the lateral diffusion of the detergent into aggregates at higher TC concentrations.  相似文献   

19.
1977年Kunitake等首次报道了双十二烷基二甲基溴化铵在水溶液中自组织成类似于卵磷脂双层结构的囊泡,泡壁即为双分子膜。该发现表明可以用人工合成方法建造仿生组织,开辟了合成双分子膜研究的新领域。单链两亲性成膜物质,一般由亲水基团、间链、刚性生色基和尾链4部分组成。本文报道4-(4′-十六烷氧基-4-联苯氧基)丁基三甲基溴化铵  相似文献   

20.
We have investigated the effect of a cationic lipid [DOTAP] on both the thermotropic phase behavior and the structural organization of aqueous dispersions of dipalmitoyl-phosphatidylcholine [DPPC] by means of high-sensitivity differential scanning calorimetry and dynamic light scattering measurements. We find that the incorporation of increasing quantities of DOTAP progressively reduces the temperature and the enthalpy of the gel-to-liquid crystalline transition. We are further showing that, in mixed DOTAP-DPPC systems, the reduction of the phase transition temperature is accompanied by a reduction of the average size of the structures present in the aqueous mixtures, whatever the DOTAP concentration is. These results, which extend a previous investigation by Campbell et al. (Campbell, R. B.; Balasubramanian, S. V.; Straubinger, R. M.; Biochim. Biosphys. Acta 2001, 27, 1512.) limited to a DOTAP concentration below 20 mol %, confirm that the insertion of cationic head groups in zwitterionic phosphatidylcholine bilayers facilitates the formation of stable, relatively small, unilamellar vesicles. This self-assembling restructuring from an aqueous multilamellar structure toward a liposomal phase is favored by decreasing the phospholipid phase transition temperature and by increasing the temperature of the system. This reduction of the average size and the appearance of a stable liposomal phase is also promoted by a heating and cooling thermal treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号