首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shibasaki's heterobimetallic complexes M3(THF)n(BINOLate)3Ln [M = Li, Na, K; Ln = lanthanide(III)] are among the most successful asymmetric Lewis acid catalysts. Why does M3(THF)n(BINOLate)3Ln readily bind substrates when M = Li but not when M = Na or K? Structural studies herein indicate Na- and K-C cation-pi interactions and alkali metal radius may be more important than even lanthanide radius. Also reported is a novel polymeric [K3(THF)2(BINOLate)3Yb]n structure that provides the first evidence of interactions between M3(THF)n(BINOLate)3Ln complexes.  相似文献   

2.
Just O  Rees WS 《Inorganic chemistry》2001,40(8):1751-1755
Anhydrous lanthanide(III) chlorides (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) react with 3 equiv of lithium 2,2,5,5-tetramethyl-2,5-disila-1-azacyclopentanide, Li[N[Si(CH3)2CH2Ch2Si(CH3)2]], in THF or Et(2)O to afford the monomeric four-coordinate heteroleptic ate complexes Ln[N[Si(CH3)2CH2CH2Si(CH3)2]]3(mu-Cl)Li(THF/Et2O)3 (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5), Ho (6), Er (7), Tm (8), Yb (9)), whose solid-state structures were determined by the single-crystal X-ray diffraction technique. All complexes additionally were characterized by melting point determination, elemental analyses, and mass spectrometry.  相似文献   

3.
The reduction of selected lanthanide cations to the zerovalent state in the room-temperature ionic liquid [Me3N(n)Bu][TFSI] is reported (where TFSI = bistriflimide, [N(SO2CF3)2]-). The lanthanide cations were introduced to the melt as the TFSI hydrate complexes [Ln(TFSI)3(H2O)3] (where Ln = La(III), Sm(III) or Eu(III)). The lanthanum compound [La(TFSI)3(H2O)3] has been crystallographically characterized, revealing the first structurally characterized f-element TFSI complex. The lanthanide in all three complexes was shown to be reducible to the metallic state in [Me3N(n)Bu][TFSI]. For both the Eu and Sm complexes, reduction to the metallic state was achieved via divalent species, and there was an additional observation of the electrodeposition of Eu metal.  相似文献   

4.
Zhu X  Wang S  Zhou S  Wei Y  Zhang L  Wang F  Feng Z  Guo L  Mu X 《Inorganic chemistry》2012,51(13):7134-7143
Two series of new lanthanide amido complexes supported by bis(indolyl) ligands with amino-coordinate-lithium as a bridge were synthesized and characterized. The interactions of [(Me(3)Si)(2)N](3)Ln(III)(μ-Cl)Li(THF)(3) with 2 equiv of 3-(CyNHCH(2))C(8)H(5)NH in toluene produced the amino-coordinate-lithium bridged bis(indolyl) lanthanide amides [μ-{[η(1):η(1):η(1):η(1)-3-(CyNHCH(2))Ind](2)Li}Ln[N(SiMe(3))(2)](2)] (Cy = cyclohexyl, Ind = Indolyl, Ln = Sm (1), Eu (2), Dy (3), Yb (4)) in good yields. Treatment of [μ-{[η(1):η(1):η(1):η(1)-3-(CyNHCH(2))Ind](2)Li}Ln[N(SiMe(3))(2)](2)] with THF gave new lanthanide amido complexes [μ-{[η(1):η(1)-3-(CyNHCH(2))Ind](2)Li(THF)}Ln[N(SiMe(3))(2)](2)] (Ln = Eu (5), Dy (6), Yb (7)), which can be transferred to amido complexes 2, 3, and 4 by reflux the corresponding complexes in toluene. Thus, two series of rare-earth-metal amides could be reciprocally transformed easily by merely changing the solvent in the reactions. All new complexes 1-7 are fully characterized including X-ray structural determination. The catalytic activities of these new lanthanide amido complexes for hydrophosphonylation of both aromatic and aliphatic aldehydes and various substituted aldimines were explored. The results indicated that these complexes displayed a high catalytic activity for the C-P bond formation with employment of low catalyst loadings (0.1 mol?% for aldehydes and 1 mol?% for aldimines) under mild conditions. Thus, it provides a convenient way to prepare both α-hydroxy and α-amino phosphonates.  相似文献   

5.
A convenient and one-pot synthetic method of lanthanide thiolate compounds was developed. An excess of metallic samarium, europium, and ytterbium directly reacted with diaryl disulfides in THF to give selectively Ln(II) thiolate complexes, [Ln(SAr)(&mgr;-SAr)(thf)(3)](2) (1, Ln = Sm; 2, Ln = Eu; Ar = 2,4,6-triisopropylphenyl), Yb(SAr)(2)(py)(4) (3, py = pyridine), and [{Ln(hmpa)(3)}(2)(&mgr;-SPh)(3)][SPh] (6, Ln = Sm; 7, Ln = Eu; 8, Ln = Yb; hmpa = hexamethylphosphoric triamide). Reaction of metallic lanthanides with 3 equiv of disulfides afforded Ln(III) thiolate complexes, Ln(SAr)(3)(py)(n)()(thf)(3)(-)(n)() (9a, Ln = Sm, n = 3; 9b, Ln = Sm, n = 2; 10, Ln = Yb, n = 3) and Ln(SPh)(3)(hmpa)(3) (11, Ln = Sm; 12, Ln = Eu; 13, Ln = Yb). Thus, Ln(II) and Ln(III) thiolate complexes were prepared from the same source by controlling the stoichiometry of the reactants. X-ray analysis of 8 revealed that 8 has the first ionic structure composed of triply bridged dinuclear cation and benezenethiolate anion [8, orthorhombic, space group P2(1)2(1)2(1) with a = 21.057(9), b = 25.963(7), c = 16.442(8) ?, V = 8988(5) ?(3), Z = 4, R = 0.040, R(w) = 0.039 for 5848 reflections with I > 3sigma(I) and 865 parameters]. The monomeric structures of 11 and 13 were revealed by X-ray crystallographic studies [11, triclinic, space group P&onemacr; with a = 14.719(3), b = 17.989(2), c = 11.344(2) ?, alpha = 97.91(1), beta = 110.30(2), gamma = 78.40(1) degrees, V = 2751.9(9) ?(3), Z = 2, R = 0.045, R(w) = 0.041 for 7111 reflections with I > 3sigma(I) and 536 parameters; 13, triclinic, space group P&onemacr; with a = 14.565(2), b = 17.961(2), c = 11.302(1) ?, alpha = 97.72(1), beta = 110.49(1), gamma = 78.37(1) degrees, V = 2706.0(7) ?(3), Z = 2, R = 0.031, R(w) = 0.035 for 9837 reflections with I > 3sigma(I) and 536 parameters]. A comparison with the reported mononuclear and dinuclear lanthanide thiolate complexes has been made to indicate that the Ln-S bonds weakened by the coordination of HMPA to lanthanide metals have ionic character.  相似文献   

6.
在乙腈和二氯甲烷混合溶液中合成了三价稀土元素(La, Nd, Eu, Dy, Er, Yb)硫氰酸盐与辛二酰双(4'-苯并-15-冠-5)的六个新配合物。并在氩气氛中, 以四氢呋喃为溶剂, 锂-萘为还原剂, 制得了二价铕硫氰酸盐与辛二酰双(4'-苯并-15-冠-5)的固体配合物。通过元素分析、红外光谱、差热热重分析、荧光光谱、穆斯堡尔谱、电子自旋共振谱、还原性实验等研究了双冠醚与稀土离子的配位作用, 并讨论了三价和二价稀土配合物在物理化学性质上的差别。  相似文献   

7.
Yan L  Liu H  Wang J  Zhang Y  Shen Q 《Inorganic chemistry》2012,51(7):4151-4160
Metathesis reactions of YbI(2) with Li(2)L (L = Me(3)SiN(Ph)CN(CH(2))(3)NC(Ph)NSiMe(3)) in THF at a molar ratio of 1:1 and 1:2 both afforded the Yb(II) iodide complex [{YbI(DME)(2)}(2)(μ(2)-L)] (1), which was structurally characterized to be a dinuclear Yb(II) complex with a bridged L ligand. Treatment of EuI(2) with Li(2)L did not afford the analogous [{EuI(DME)(2)}(2)(μ(2)-L)], or another isolable Eu(II) complex, but the hexanuclear heterobimetallic cluster [{Li(DME)(3)}(+)](2)[{(EuI)(2)(μ(2)-I)(2)(μ(3)-L)(2)(Li)(4)}(μ(6)-O)](2-) (2) was isolated as a byproduct in a trace yield. The rational synthesis of cluster 2 could be realized by the reaction of EuI(2) with Li(2)L and H(2)O in a molar ratio of 1:1.5:0.5. The reduction reaction of LLnCl(THF)(2) (Ln = Yb and Eu) with Na/K alloy in THF gave the corresponding Ln(II) complexes [Yb(3)(μ(2)-L)(3)] (3) and [Eu(μ(2)-L)(THF)](2) (4) in good yields. An X-ray crystal structure analysis revealed that each L in complex 3 might adopt a chelating ligand bonding to one Yb atom and each Yb atom coordinates to an additional amidinate group of the other L and acts as a bridging link to assemble a macrocyclic structure. Complex 4 is a dimer in which the two monomers [Eu(μ(2)-L)(THF)] are connected by two μ(2)-amidinate groups from the two L ligands. Complex 3 reacted with CyN═C═NCy and diazabutadienes [2,6-(i)Pr(2)C(6)H(3)N═CRCR═NC(6)H(3)(i)Pr(2)-2,6] (R═H, CH(3)) (DAD) as a one-electron reducing agent to afford the corresponding Yb(III) derivatives: the complex with an oxalamidinate ligand [LYb{(NCy)(2)CC(NCy)(2)}YbL] (5) and the complexes containing a diazabutadiene radical anion [LYb((i)Pr(2)C(6)H(3)NCRCRNC(6)H(3)(i)Pr(2))] (R = H (6), R = CH(3) (7)). Complexes 5-7 were confirmed by an X-ray structure determination.  相似文献   

8.
The reaction of the lanthanide oxides, bromotrimethylsilane and water in THF resulted in [LnBr3(THF)x]. If digylme (diglyme = diethylen glicol dimethyl ether) was added to these reaction mixtures in the mole ratio n(Ln): n(diglyme) ~ 1: 2.2 – 3, the ionic complexes [LnBr2(diglyme)2][LnBr4(diglyme)] (Ln = La ( 1 ), Sm ( 2 ), Eu ( 3 )) were isolated. Crystal structures of the two new complexes, 2 and 3 , which were recrystallized from dichloromethane, were determined. The immediate reaction of the complexes 1 and 2 with HMPA (HMPA = hexamethylphosphoramide) in toluene resulted in [LnBr2(HMPA)4]Br·0.5H2O (Ln = La( 4 ), Sm ( 5 )).  相似文献   

9.
Chen X  Lim S  Plecnik CE  Liu S  Du B  Meyers EA  Shore SG 《Inorganic chemistry》2005,44(17):6052-6061
The divalent lanthanide bis((cyclooctane-1,5-diyl)dihydroborate) complexes {K(THF)4}2{Ln{(mu-H)2BC8H14}4} (Ln = Eu, 3; Yb, 4) were prepared by a metathesis reaction between (THF)(x)LnCl2 and K[H2BC8H14] in THF in a 1:4 molar ratio. Although the reaction ratios were varied between 1:3 and 1:6, complexes 3 and 4 were the only lanthanide 9-BBN hydroborates produced. Because of disorder of THF in crystals of 3 and 4, good single-crystal X-ray structural data could not be obtained. However, when the potassium cation was replaced by the tetramethylammonium cation or when MeTHF (2-methyltetrahydrofuran) was employed in place of THF, good quality crystals were obtained. Complexes [NMe4]2[Ln{(mu-H)2BC8H14}4] (Ln = Eu, 5; Yb, 6) were afforded by metathesis reactions of NMe4Cl with 3 and 4 in situ. On the basis of the single-crystal X-ray diffraction analysis, the four 9-BBN tetrahydroborate ligands are tetrahedrally arranged around the lanthanide cation in 5 and 6. The two structures differ in that one alpha-C-H bond from each of the four {(mu-H)2BC8H14}4 units exhibits an agostic interaction with Eu(II) in 5 but, in complex 6, only two of the alpha-C-H bonds form agostic interactions with Yb(II). Complexes {K(MeTHF)3}2{Ln{(mu-H)2BC8H14}4} (Ln = Eu, 7; Yb, 8) were produced by employing MeTHF in place of THF. The structures of 7 and 8 display connectivity between the anion {Ln{(mu-H)2BC8H14}4}2- and the cation {K(MeTHF)3}+, in which the potassium not only interacts directly with the hydrogens of the Ln-H-B bridged bonds but is also involved in agostic interactions with alpha-C-H bonds. By systematically examining the structures of complexes 3-8 and taking into account the previously reported complexes (THF)4Ln{(mu-H)2BC8H14}2 (Ln = Eu, 1; Yb, 2), it is concluded that Eu(II) appears to have a better ability to form agostic interactions than Yb(II) because of its larger size, even though Yb(II) has a higher positive charge density.  相似文献   

10.
The reaction of the lanthanide salts LnI3(thf)4 and Ln(OTf)3 with tris(2-pyridylmethyl)amine (tpa) was studied in rigorously anhydrous conditions and in the presence of water. Under rigorously anhydrous conditions the successive formation of mono- and bis(tpa) complexes was observed on addition of 1 and 2 equiv of ligand, respectively. Addition of a third ligand equivalent did not yield additional complexes. The mono(tpa) complex [Ce(tpa)I3] (1) and the bis(tpa) complexes [Ln(tpa)2]X3 (X = I, Ln = La(III) (2), Ln = Ce(III) (3), Ln = Nd(III) (4), Ln = Lu(III) (5); X = OTf, Ln = Eu(III) (6)) were isolated under rigorously anhydrous conditions and their solid-state and solution structures determined. In the presence of water, 1H NMR spectroscopy and ES-MS show that the successive addition of 1-3 equiv of tpa to triflate or iodide salts of the lanthanides results in the formation of mono(tpa) aqua complexes followed by formation of protonated tpa and hydroxo complexes. The solid-state structures of the complexes [Eu(tpa)(H2O)2(OTf)3] (7), [Eu(tpa)(mu-OH)(OTf)2]2 (8), and [Ce(tpa)(mu-OH)(MeCN)(H2O)]2I4 (9) have been determined. The reaction of the bis(tpa) lanthanide complexes with stoichiometric amounts of water yields a facile synthetic route to a family of discrete dimeric hydroxide-bridged lanthanide complexes prepared in a controlled manner. The suggested mechanism for this reaction involves the displacement of one tpa ligand by two water molecules to form the mono(tpa) complex, which subsequently reacts with the noncoordinated tpa to form the dimeric hydroxo species.  相似文献   

11.
New hydrophobic, tetradentate nitrogen heterocyclic reagents, 6,6'-bis-(5,6-dialkyl-1,2,4-triazin-3-yl)-2,2'-bipyridines (BTBPs) have been synthesised. These reagents form complexes with lanthanides and crystal structures with 11 different lanthanides have been determined. The majority of the structures show the lanthanide to be 10-coordinate with stoichiometry [Ln(BTBP)(NO3)3] although Yb and Lu are 9-coordinate in complexes with stoichiometry [Ln(BTBP)(NO3)2(H2O)](NO3). In these complexes the BTBP ligands are tetradentate and planar with donor nitrogens mutually cisi.e. in the cis, cis, cis conformation. Crystal structures of two free molecules, namely C2-BTBP and CyMe4-BTBP have also been determined and show different conformations described as cis, trans, cis and trans, trans, trans respectively. A NMR titration between lanthanum nitrate and C5-BTBP showed that two different complexes are to be found in solution, namely [La(C5-BTBP)2]3+ and [La(C5-BTBP)(NO3)3]. The BTBPs dissolved in octanol were able to extract Am(III) and Eu(III) from 1 M nitric acid with large separation factors.  相似文献   

12.
The reaction between 1.5 equiv of elemental iodine and rare earth metals in powder form in THF at room temperature gives the rare earth triiodides LnI(3)(THF)(n)() in good yields. Purification by Soxhlet extraction of the crude solids with THF reliably gives the THF adducts LnI(3)(THF)(4) [Ln = La, Pr] and LnI(3)(THF)(3.5) [Ln = Nd, Sm, Gd, Dy, Er, Tm, Y] as microcrystalline solids. X-ray crystallography reveals that the early, larger lanthanide iodide PrI(3)(THF)(4) crystallizes as discrete molecules having a pentagonal bipyramidal structure, whereas the later, smaller lanthanide iodides LnI(3)(THF)(3.5) [Ln = Nd, Gd, Y] crystallize as solvent-separated ion pairs [LnI(2)(THF)(5)][LnI(4)(THF)(2)] in which the cations adopt a pentagonal bipyramidal geometry and the anions adopt an octahedral geometry in the solid state.  相似文献   

13.
Zhang X  Wang D  Dou J  Yan S  Yao X  Jiang J 《Inorganic chemistry》2006,45(26):10629-10635
A series of 10 novel polyoxometalate (W/Mo) compounds connected via a trivalent lanthanide cation bridge, H2{[K(H2O)2]2[Ln(H2O)5]2(H2M12O42)}.n(H2O) (Ln = La, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu; M = W or W/Mo) (1-10), were designed and synthesized on the basis of the abduction of Al3+ in aqueous solution. X-ray diffraction analyses reveal that the structures of complexes 1-10 are three-dimensional frameworks assembled from the arrangement of H2M12O42(10-) (named paradodecmetalate-B) and Ln(H2O)53+ with two planes, which are constructed via the unification of H2M12O42(10-) and Ln(H2O)53+, along the [100] and [001] directions. Magnetic measurements reveal the paramagnetic properties and a strong ferromagnetic coupling between the two nearest-neighboring lanthanide cations, Ln3+ (Ln = Dy, Er), within the circle for compounds 2 and 4-9.  相似文献   

14.
The reaction of Ln(NO3)3.aq with K3[Fe(CN)6] or K3[Co(CN)6] in N,N'-dimethylformamide (DMF) led to 25 heterodinuclear [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O and [Ln(DMF)4(H2O)3(mu-CN)Co(CN)5].nH2O complexes (with Ln = all the lanthanide(III) ions, except promethium and lutetium). Five complexes (Pr(3+)-Fe3+), (Tm(3+)-Fe3+), (Ce(3+)-Co3+), (Sm(3+)-Co3+), and (Yb(3+)-Co3+) have been structurally characterized; they crystallize in the equivalent monoclinic space groups P21/c or P21/n. Structural studies of these two families show that they are isomorphous. This relationship in conjunction with the diamagnetism of the Co3+ allows an approximation to the nature of coupling between the iron(III) and the lanthanide(III) ions in the [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O complexes. The Ln(3+)-Fe3+ interaction is antiferromagnetic for Ln = Ce, Nd, Gd, and Dy and ferromagnetic for Ln = Tb, Ho, and Tm. For Ln = Pr, Eu, Er, Sm, and Yb, there is no sign of any significant interaction. The isotropic nature of Gd3+ helps to evaluate the value of the exchange interaction.  相似文献   

15.
We report the synthesis of Ln3+ nitrate [Ln(Tpm)(NO3)3] ⋅ MeCN (Ln=Yb ( 1Yb ), Eu ( 1Eu )) and chloride [Yb(Tpm)Cl3] ⋅ 2MeCN ( 2Yb ), [Eu(Tpm)Cl2(μ-Cl)]2 ( 2Eu ) complexes coordinated by neutral tripodal tris(3,5-dimethylpyrazolyl)methane (Tpm). The crystal structures of 1Ln and 2Ln were established by single crystal X-ray diffraction, while for 1Yb high resolution experiment was performed. Nitrate complexes 1Ln are isomorphous and both adopt mononuclear structure. Chloride 2Yb is monomeric, while Eu3+ analogue 2Eu adopts a binuclear structure due to two μ2-bridging chloride ligands. The typical lanthanide luminescence was observed for europium complexes ( 1Eu and 2Eu ) as well as for terbium and dysprosium analogues ([Ln(Tpm)(NO3)3] ⋅ MeCN, Ln=Tb ( 1Tb ), Dy ( 1Dy ); [Ln(Tpm)Cl3] ⋅ 2MeCN, Ln=Tb ( 2Tb ), Dy ( 2Dy )).  相似文献   

16.
Metathesis of lanthanide tris di-tert-butyl beta-diketonates ([Ln(thd)3] Ln=Pr, Nd, Eu, Tb) with one or two equivalents of group 1 salts of the sulfur bridged binaphtholate dianion [1,1'-S(2-OC10H4But(2)-3,6)2]2-, [M2L], M=K, Li affords luminescent mono- and bis-ligand substituted complexes ML[LnL(thd)2].L; M=K, Ln=Pr , Nd , Eu and Tb (L=thf, diethyl ether or toluene) and M(thf)2[LnL2(thd)]; M=Li, Ln=Pr , Nd , Eu , Tb . The potassium salt [K2L] affords mono-L substituted complexes most cleanly, while the lithium salt [Li2L] yields the bis-L substituted complexes most cleanly. The L ligands function as antenna for the sensitised lanthanide-centred emission in Eu3+ and Tb3+ complexes. The X-ray single-crystal structures of mono- and bis-L lanthanide complexes of Nd3+ are presented.  相似文献   

17.
[Ln[N(SiMe3)2]2(THF)2](Ln = Sm, Yb) reacts with 1 equiv. of carbon-bridged biphenols, 2,2'-methylene-bis(6-tert-butyl-4-methylphenol)(L1H2) or 2,2'-ethylidene-bis(4,6-di-tert-butylphenol)(L2H2), in toluene to give the novel aryloxide lanthanide(II) complexes [[LnL1(THF)n]2](Ln = Sm, n = 3 (1); Ln = Yb, n = 2 (2)) and [[LnL2(THF)3]2](Ln = Sm (5); Ln = Yb (6)) in quantitative yield, respectively. Addition of 2 equiv. of hexamethylphosphoric triamide (HMPA) to a tetrahydrofuran (THF) solution of 1, 2 and 5 affords the corresponding HMPA-coordinated complexes, [[LnL1(THF)m(HMPA)n]2(THF)y](Ln = Sm, n = 2, m = 0, y = 2 (3); Ln = Yb, m = 1, n = 1, y = 6 (4)) and [[SmL2(HMPA)2]2](7) in excellent yields. The single-crystal structural analyses of 3, 4 and 7 revealed that these aryloxide lanthanide(II) complexes are dimeric with two Ln-O bridges. The coordination geometry of each lanthanide metal can be best described as a distorted trigonal bipyramid. Complexes 1-3, 5 and 7 can catalyze the ring-opening polymerization of epsilon-caprolactone (epsilon-CL), and 1-3, along with 5 show moderate activity for the ring-opening polymerization of 2,2-dimethyltrimethylene carbonate (DTC) and the copolymerization of epsilon-CL and DTC to give random copolymers with high molecular weights and relatively narrow molecular weight distributions..  相似文献   

18.
Xu X  Zhang Z  Yao Y  Zhang Y  Shen Q 《Inorganic chemistry》2007,46(22):9379-9388
A series of neutral and anionic bis(phenolate) lanthanide amides were synthesized by general metathesis reactions, and their reactivity was explored. Protolytic ligand exchange reactions of MBMPH2 (MBMP = 2,2'-methylene bis(6-tert-butyl-4-methyl-phenolate)) with [Ln{N(TMS)2}2(mu-Cl)(THF)]2 (TMS = SiMe3) afforded the desired bridged bis(phenolate) lanthanide chlorides [(MBMP)Ln(mu-Cl)(THF)2]2 [Ln = Nd (1), Yb (2)] in high isolated yields. These lanthanide chlorides were found to be useful precursors for the synthesis of the corresponding lanthanide derivatives. Reactions of 1 and 2 with 2 equiv of NaN(TMS)2 in THF produced the expected neutral bis(phenolate) lanthanide amido complexes (MBMP)Ln[N(TMS)2](THF)2 [Ln = Nd (3), Yb (4)] in high yields. Whereas the reactions of 1 and 2 with LiN(TMS)2 in a 1:4 molar ratio gave the anionic bis(phenolate) lanthanide amides as discrete ion-pair complexes [Li(THF)4][(MBMP)Ln{N(TMS)2}2] [Ln = Nd (5), Yb (6)] in high isolated yields. Further study revealed that 5 and 6 can also be conveniently synthesized in high yields by the direct reactions of MBMPH2 with [Ln{N(TMS)2}2(mu-Cl)(THF)]2 in a 2:1 molar ratio, and then with 4 equiv of nBuLi. The reactivity of the neutral and anionic bis(phenolate) lanthanide amides was comparatively investigated. It was found that the insertion reactions of carbodiimide into the Ln-N bond of neutral lanthanide amido complexes 3 and 4 gave the anticipated bis(phenolate) lanthanide guanidinate complexes [(mu-O-MBMP)Nd{(iPrN)2CN(TMS)2}]2 (7) and (MBMP)Yb[(iPrN)2CN(TMS)2] (8), respectively, in high yields, whereas the similar reaction of carbodiimide with anionic amido complex 5 provided the unexpected ligand-redistributed products, and the homoleptic ion-pair bis(phenolate) neodymium complex [Li(DME)2(THF)][(MBMP)2Nd(THF)2] (9) was finally isolated as one of the products. Furthermore, the anionic bis(phenolate) lanthanide amides showed higher catalytic activity for the polymerization of epsilon-caprolactone than the neutral ones. All of the complexes were characterized with elemental analysis and IR spectra, and the definitive molecular structures of 1-3 and 5-9 were provided by single-crystal X-ray analyses.  相似文献   

19.
The synthesis and structures of lanthanide complexes supported by benzoxazine-functionalized amine bridged bis(phenolate) ligand 6,6'-(2-(8-tert-butyl-6-methyl-2H-benzo[e][1,3]oxazin-3(4H)-yl)ethylazanediyl)bis(methylene)bis(2-tert-butyl-4-methylphenolato) (L(2-)) are described. Salt metathesis reaction between lanthanide trichloride and 2 eq of LNa(2) in THF at room temperature afforded the corresponding "ate" complexes [L(2)LnNa(THF)(2)] (Ln[double bond, length as m-dash]Y (1), Nd (2), Er (3), Yb (4)). Further treatment of the product with 18-crown-6 afforded discrete ion-pair complexes [L(2)Ln][(18-crown-6)Na(THF)(2)] (Ln[double bond, length as m-dash]Y (5), Yb (6)). The single-crystal structural analyses of 1 and 3-6 revealed that the lanthanide cation and the sodium cation were bridged by two phenolate oxygen atoms in complexes 1, 3 and 4, while in complexes 5 and 6, the anion comprises a lanthanide cation coordinated by two L(2-) and the cation is comprised of a sodium cation surrounded by an 18-crown-6 and two THF molecules. These complexes were found to exhibit distinct activities towards the ring-opening polymerization of ε-caprolactone and l-lactide.  相似文献   

20.
Treatment of the bis(phosphanyl)amide (Ph2P)2NH with KH in boiling THF followed by crystallization from THF/n-pentane leads to [K(thf)n][N(PPh2)2] (n = 1.25, 1.5). Reaction of [K(thf)n][N(PPh2)2] with anhydrous yttrium or lanthanide trichlorides in a 3:1 molar ratio afforded homoleptic bis(phosphanyl)amide complexes [Ln[N(PPh2)2]3] (Ln = Y, Er) as large crystals in good yields. [Ln[N(PPh2)2]3] can also be obtained by reaction of the homoleptic bis(trimethylsilyl)amides of Group 3 metals and lanthanides [Ln[N(SiMe3)2]3] (Ln = Y, La, Nd) with three equivalents of (Ph2P)2NH in boiling toluene. The single-crystal X-ray structures of these complexes always show eta 2 coordination of the ligand. Dynamic behavior of the ligand is observed in solution and is caused by rapid exchange of the two different phosphorus atoms. [Ln[N(PPh2)2]3] was used as catalyst for the polymerization of epsilon-caprolactone. Significant differences in terms of correlation of theoretical and experimental molecular weights as well as polydispersities were observed depending on the nature of Ln. On the basis of the crystal structure of the heteroleptic complex [Lu[N(PPh2)2]3(thf)], we suggest that in the initiation step of epsilon-caprolactone polymerization the lactone adds to the lanthanide atom to form a sevenfold coordination sphere around the central atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号