首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An ab initio computational study of the regulating function of the methyl group in the strength of the CH...O hydrogen bond (HB) with XCC-H (X = H, CH3, F) as a HB donor and HOY (Y = H, CH3, Cl) as a HB acceptor has been carried out at the MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ levels. The bond lengths, interaction energies, and stretching frequencies are compared in the gas phase. The results indicate that the methyl substitution of the proton acceptor strengthens the CH...O HB, whereas that of the proton donor weakens the CH...O HB. NBO analysis demonstrates that the methyl group of the proton acceptor is electron-withdrawing and that of the proton donor is electron-donating in the formation of the CH...O HB. The electron-donation of the methyl group in the proton acceptor plays a positive contribution to the formation of the CH...O HB, whereas the electron-withdrawing action of the methyl group in the proton donor plays a negative contribution to the formation of the CH...O HB. The positive contribution of methyl group in the proton acceptor is larger than the negative contribution of methyl group in the proton donor.  相似文献   

2.
对单电子溴键复合物H3C···Br—Y(Y=H, CCH, CN, NC, C2H3)的结构与性质进行了理论研究. 在B3LYP/6-311++G**水平上计算了稳定构型并做了频率分析. BSSE矫正的相互作用能(EBSSE)和NBO及AIM分析输入的波函数在MP2/6-311++G**水平下完成. 复合物H3C···Br—Y中, CH3(供电子体)自由基均提供一未成对电子与Br—Y中Br(受电子体)形成了单电子溴键, 此单电子溴键也具有“三电子”键的特征. 单电子溴键的形成导致甲基H的背向Y弯曲和Br—Y键的拉长及红移单电子溴键复合物的产生. 考察了电子受体中不同取代基, C(spn)-Br杂化及溶剂的存在对复合物作用的影响, 将单电子氢键, 单电子卤键和单电子锂键的作用强度做了对比, 进一步对Popelier提出的氢键体系中的前三个重要拓扑指标在单电子溴键体系中的重现性进行了探讨.  相似文献   

3.
The effect of methyl group on the strength of the ionic hydrogen bond between C2H2 and H3O+ has been studied with quantum chemical calculations at the UMP2/6‐311++G(d,p) level. The presence of a methyl group in the proton acceptor results in an energetic increase of 6.02 kcal/mol, increased by about 39%, whereas that in the proton donor leads to an energetic decrease of 2.18 kcal/mol, decreased by 14%. The charge analyses indicate that the methyl group in the proton acceptor is electron‐donating and that in the proton donor is electron‐withdrawing. The former plays a positive contribution to the formation of ionic hydrogen bond and the latter plays a negative contribution to the formation of ionic hydrogen bond. The weakening effect of solvent on the role of methyl group in the ionic hydrogen bond has also been studied at the UB3LYP/6‐311++G(d,p) level. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

4.
The characteristics and structures of single-electron halogen bond complexes [H3C?Br-Y (Y = H, CCH, CN, NC, C2H3)] have been investigated by theoretical calculation methods. The geometries were optimized and frequencies calculated at the B3LYP/6-311++G** level. The interaction energies were corrected for basis set superposition error (BSSE) and the wavefunctions obtained by the natural bond orbital (NBO) and atom in molecule (AIM) analyses at the MP2/6-311++G** level. For each H3C?Br-Y complex, a single-electron Br bond is formed between the unpaired electron of the CH3 (electron donor) radical and the Br atom of Br-Y (electron acceptor); this kind of single-electron bromine bond also possesses the character of a “three-electron bond”. Due to the formation of the single-electron Br bond, the C-H bonds of the CH3 radical bend away from the Br-Y moiety and the Br-Y bond elongates, giving red-shifted single-electron Br bond complexes. The effects of substituents, hybridization of the carbon atom, and solvent on the properties of the complexes have been investigated. The strengths of single-electron hydrogen bonds, single-electron halogen bonds and single-electron lithium bonds have been compared. In addition, the single-electron halogen bond system is discussed in the light of the first three criteria for hydrogen bonding proposed by Popelier.  相似文献   

5.
The regulating function of methyl group on the strength of dihydrogen bond was investigated in HBeH-HCCH and HMgH-HCCH complexes at the MP2/6-311++G(3df,2p) level. The bond lengths, infrared spectra, interaction energies, and charge transfers were analyzed. The presence of methyl group in the proton acceptor enhances the strength of dihydrogen bond, whereas its presence in the proton donor weakens the strength of dihydrogen bond. The charge analyses indicate that the methyl group in the proton donor and acceptor is electron-donating, thus the methyl group in the proton donor plays a negative role, whereas in the proton acceptor it plays a positive role in the formation of dihydrogen bond.  相似文献   

6.
Simulations of polymer‐solvent and polymer‐polymer aggregates, in which the study of hydrogen bonding plays an important role, have been carried out with two blend systems. The aim was to examine the influence of the solvent on blend complexation and to compare the strength of different hydrogen bonds in a blend system. We quantified the strength of one hydrogen bond in the blend environments. For this we used the EVOCAP software, developed by our institute. It allows the building of large molecular aggregates with realistic and homogeneous densities, with an implemented positioning algorithm of the molecules under consideration and their excluded volume, and a charge equilibration method for the partial charge calculation. In the simulated aggregates the specific interaction energy of the hydrogen atom forming the hydrogen bond was a useful indicator for our studies. Through a direct correlation of this specific‐interaction energy with the strength of the hydrogen bond, we supported the experimental result that, in toluene, complex formation between poly(methyl methacrylate) (PMMA) and PSOH, a hydroxyl‐modified polystyrene, is possible, but not in tetrahydrofuran. Varying the proton‐donor polymer, also a hydroxyl‐modified polystyrene, in blends of poly(vinyl methyl ether) (PVME) with groups of different donor strength, we reconstructed the experimental row of increasing hydrogen‐bond strengths.  相似文献   

7.
The millimeter-wave absorption and Fourier transform microwave spectra of five isotopologues of the 1:1 adduct of dimethoxymethane-water have been measured in supersonic expansions. Each rotational transition appears as a quintuplet, due to the internal rotation of the two methyl groups, which are nonequivalent in the adduct. The water moiety, linked asymmetrically to dimethoxymethane, behaves as a proton donor to one of its oxygen atoms and interferes with the internal rotation of the farther methyl group through a C...HO interaction. From the analysis of the observed splittings, the V(3) barriers to the internal rotation of the two methyl groups have been determined to be 6.83(8) and 6.19(8) kJ mol(-1). The hydrogen bond structural parameters have been determined, the O...HO and C...HO distances being 1.93(1) and 2.78(4) A, respectively.  相似文献   

8.
在B3LYP/6-311++G**及UMP2/6-311++G**水平上对单电子锂键复合物H3C…Li-H的甲基非加和性进行了理论研究.通过对复合物构型、能量、电荷转移及拓扑参数进行分析的基础上,讨论H3C…LiH、H3CH2C…LiH、(H3C)2HC…LiH及(H3C)3C…LiH的作用强度.结果表明,(H3C)3C自由基与LiH间形成的单电子锂键复合物的强度最强,其次为(H3C)2HC和H3CH2C,而H3C自由基与LiH间形成的复合物的强度最弱,甲基非加和性使得体系的作用强度增强,这也通过自然键轨道和分子中的原子理论分析得到了证明.另外,单电子锂键体系中参数间存在着几种线性/非线性关系,单电子锂键的作用模式与单电子氢键及单电子卤键有所不同.  相似文献   

9.
In this study, we apply UCCSD/6-31++G** to investigate the ability of an OH radical acting as a hydrogen bond acceptor with HF, HCl, and H(2)O (HO...HX; X=F, Cl, OH) or as a hydrogen bond donor with H(2)O and H(2)S (OH...XH(2); X=O and S). We also replace OH with H(2)O and make a fair comparison between them. Additionally, the counterpoise method (CP) has been used to examine the effect of basis set superposition error (BSSE). Our results reveal that OH is a stronger hydrogen bond donor but a weaker hydrogen bond acceptor than H(2)O. This conclusion is independent of the correction for BSSE and can be rationalized by the NBO analysis, the results of which indicate that OH radical has a lower n(O) and sigma*(O-H) in energy than that of H(2)O.  相似文献   

10.
The solvatochromism in 8-hydroxy-1,6-naphthyridin-5(6H)-one-7-carboxylic acid methyl ester (1), 5-hydroxy-1,7-naphthyridin-8(7H)-one-6-carboxylic acid methyl ester (2), and 4-hydroxy-2-methyl-1(2H)-isoquinolone-3-carboxylic acid methyl ester (3), has been studied in solvents of different polarity and hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) ability. The relative stabilities of isomers for these naphthyridine derivatives and their interaction with the solvent are reported. Two intramolecular hydrogen-bonded structures contribute to the ground state of compound 1. Temperature effects on the absorption bands were recorded to analyse the possible equilibrium between covalent and zwitterionic forms. The formation of zwitterionic species was observed only in HBD solvents, from which is inferred the solvent assistance in the proton transference. AM1 and PM3 semi-empirical calculations were used in support of the proposed interpretations.  相似文献   

11.
使用密度泛函理论B3LYP方法和二阶微扰理论MP2方法对由1-甲基尿嘧啶与N-甲基乙酰胺所形成的氢键复合物中的氢键强度进行了理论研究, 探讨了不同取代基取代氢键受体分子1-甲基尿嘧啶中的氢原子对氢键强度的影响和氢键的协同性. 研究表明: 供电子取代基使N-H…O=C氢键键长r(H…O)缩短, 氢键强度增强; 吸电子取代基使N-H…O=C氢键键长r(H…O)伸长, 氢键强度减弱. 自然键轨道(NBO)分析表明: 供电子基团使参与形成氢键的氢原子的正电荷增加, 使氧原子的负电荷增加, 使质子供体和受体分子间的电荷转移量增多; 吸电子基团则相反. 供电子基团使N-H…O=C氢键中氧原子的孤对电子轨道n(O)对N-H的反键轨道σ*(N-H)的二阶相互作用稳定化能增强, 吸电子基团使这种二阶相互作用稳定化能减弱. 取代基对与其相近的N-H…O=C氢键影响更大.  相似文献   

12.
This work deals with a theoretical study of the (CH...C)- hydrogen bonds in CH4, CH3X, and CH2X2 (X = F, Cl) complexed with their homoconjugate and heteroconjugate carbanions. The properties of the complexes are calculated with the B3LYP method using the 6-311++G(d,p) or 6-311++G(2df,2p) basis sets. The deprotonation enthalpies (DPE) of the CH bond or the proton affinities of the carbanions (PA(C-) are calculated as well. All the systems with the exception of the CH4...CHCl2(-) one are characterized by a double minimum potential. In some of the complexes, the (CH(b)...C)- hydrogen bond is linear. In other systems, such as CH3F...CH2F- and CH3F...CHF2(-), there is a large departure from linearity, the systems being stabilized by electrostatic interactions between the nonbonded H of the neutral molecule and the F atom of the carbanion. In the transition state, the (CH(b)...C)- bond is linear, and there is a large contraction of the intermolecular C...C distance. The binding energies vary within a large range, from -1.4 to -11.1 kcal mol(-1) for the stable complexes and -8.6 to -44.1 kcal mol(-1) for the metastable complexes. The energy barriers to proton transfer are between 5 and 20 kcal mol(-1) for the heteroconjugate systems and between 3.8 and 8.3 kcal mol(-1) for the homoconjugate systems. The binding energies of the linear complexes depend exponentially on 1.5DPE - PA(C-), showing that the proton donor is more important than the proton acceptor in determining hydrogen bond strength. The NBO analysis indicates an important electronic reorganization in the two partners. The elongations of the CH bond resulting from the interaction with the carbanion depend on the occupation of the sigma*(CH(b)) antibonding orbitals and on the hybridization of the C bonded to H(b). The frequency shifts of the nu(CH)(A1) stretching vibration range between 15 and 1150 cm(-1). They are linearly correlated to the elongation of the CH(b) bond.  相似文献   

13.
A new kind of single-electron lithium bonding complexes H(3)C...LiY (Y=H, F, OH, CN, NC, and CCH) was predicted and characterized in the present paper. Their geometries (C(3v)) with all real harmonic vibrational frequencies were obtained at the MP2/aug-cc-pVTZ level. For each H(3)C...LiY complex, single-electron Li bond is formed between the unpaired electron of CH(3) radical and positively charged Li atom of LiY molecule. Due to the formation of the single-electron Li bond, the C-H bonds of the CH(3) radical bend opposite to the LiY molecule and the Li-Y bond elongates. Abnormally, the three H(3)C...LiY (Y=CN, NC, and CCH) complexes exhibit blueshifted Li-Y stretching frequencies along with the elongated Li-Y bonds. Natural bond orbital analyses suggest ca. 0.02 electron transfer from the methyl radical (CH(3)) to the LiY moiety. In the single occupied molecular orbitals of the H(3)C...LiY complexes, it is also seen that the electron could of the CH(3) radical approaches the Li atom. The single-electron Li bond energies are 5.20-6.94 kcal/mol for the H(3)C...LiY complexes at the CCSD(T)aug-cc-pVDZ+BF (bond functions) level with counterpoise procedure. By comparisons with some related systems, it is concluded that the single-electron Li bonds are stronger than single-electron H bonds, and weaker than conventional Li bonds and pi-Li bonds.  相似文献   

14.
Ab initio quantum mechanics methods were applied to investigate the hydrogen bonds between CO and HNF2, H2NF, and HNO. We use the Hartree-Fock, MP2, and MP4(SDQ) theories with three basis sets 6-311++G(d,p), 6-311++G(2df,2p), and AUG-cc-pVDZ, and both the standard gradient and counterpoise-corrected gradient techniques to optimize the geometries in order to explore the effects of the theories, basis sets, and different optimization methods on this type of H bond. Eight complexes are obtained, including the two types of C...H-N and O...H-N hydrogen bonds: OC...HNF2(C(s)), OC...H2NF(C(s) and C1), and OC...HNO(C(s)), and CO...HNF2(C(s)), CO...H2NF(C(s) and C1), and CO...HNO(C(s)). The vibrational analysis shows that they have no imaginary frequencies and are minima in potential energy surfaces. The N-H bonds exhibit a small decrease with a concomitant blue shift of the N-H stretch frequency on complexation, except for OC...HNF2 and OC...H2NF(C1), which are red-shifting at high levels of theory and with large basis sets. The O...H-N hydrogen bonds are very weak, with 0 K dissociation energies of only 0.2-2.5 kJ/mol, but the C...H-N hydrogen bonds are stronger with dissociation energies of 2.7-7.0 kJ/mol at the MP2/AUG-cc-pVDZ level. It is notable that the IR intensity of the N-H stretch vibration decreases on complexation for the proton donor HNO but increases for HNF2 and H2NF. A calculation investigation of the dipole moment derivative leads to the conclusion that a negative permanent dipole moment derivative of the proton donor is not a necessary condition for the formation of the blue-shifting hydrogen bond. Natural bond orbital analysis shows that for the C...H-N hydrogen bonds a large electron density is transferred from CO to the donors, but for the O...H-N hydrogen bonds a small electron density transfer exists from the proton donor to the acceptor CO, which is unusual except for CO...H2NF(C(s)). From the fact that the bent hydrogen bonds in OC(CO)...H2NF(C(s)) are quite different from those in the others, we conclude that a greatly bent H-bond configuration shall inhibit both hyperconjugation and rehybridization.  相似文献   

15.
The present study combines both laser spectroscopy and ab initio calculations to investigate the intermolecular O? H???O hydrogen bonding of complexes of the tyrosine side chain model chromophore compounds phenol (PH) and para‐cresol (pCR) with H2O, MeOH, PH and pCR in the ground (S0) state as well as in the electronic excited (S1) state. All the experimental and computational findings suggest that the H‐bond strength increases in the S1 state and irrespective of the hydrogen bond acceptor used, the dispersion energy contribution to the total interaction energy is about 10–15 % higher in the S1 state compared to that in the S0 state. The alkyl‐substituted (methyl; +I effect) H‐bond acceptor forms a significantly stronger H bond both in the S0 and the S1 state compared to H2O, whereas the aryl‐substituted (phenyl; ?R effect) H‐bond donor shows a minute change in energy compared to H2O. The theoretical study emphasizes the significant role of the dispersive interactions in the case of the pCR and PH dimers, in particular the C? H???O and the C? H???π interactions between the donor and acceptor subunits in controlling the structure and the energetics of the aromatic dimers. The aromatic dimers do not follow the acid–base formalism, which states that the stronger the base, the more red‐shifted is the X? H stretching frequency, and consequently the stronger is the H‐bond strength. This is due to the significant contribution of the dispersion interaction to the total binding energy of these compounds.  相似文献   

16.
An ab initio computational study of the dual functions of C?S group in the M2C?S ··· HCN (M = H, F, Cl, Br, HO, H3C, H2N) complex has been performed at the MP2(Full)/aug‐cc‐pVTZ level. The C?S group can act as both the electron donor and acceptor, thus two minima complexes were found for each molecular pairs. The interaction energy of hydrogen bond in the F, Cl, or Br substituted complexes is less negative than that in the corresponding H2CS one, while the interaction energy of the σ‐hole interaction is more negative. The OH substitution weakens the hydrogen bond, whereas the H3C and H2N substitution strengthens it. The σ‐hole interaction in the HO, H3C, and H2N complexes is very weak. The substitution effect has been understood with electrostatic induction and conjugation effects. The energy decomposition analysis has been performed for the halogen‐substituted complexes. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012.  相似文献   

17.
The microwave spectrum of N-methylethylenediamine and several deuterated species has been investigated in the frequency range 26.5–40 GHz. The rotational spectra of two different conformers with a NH ⋯ N internal hydrogen bond have been assigned. Both conformers have the methyl group trans to the CC bond. The N atom connected to the methyl group acts as proton donor for a conformer (T1), and as acceptor for the second one (T2g). The former is more stable in energy by 0.65(15) kcal mol−1. Rotational lines of several vibrational satellites have been assigned in order to investigate their large amplitude motions and interactions.  相似文献   

18.
Multiparameter linear energy-density relationships to model solvent effects in room temperature ionic liquids (RTILs) are introduced and tested. The model incorporates two solvent dependent and two specific solute-solvent parameters represented by a set of electronic indexes derived from the conceptual density functional theory. The specific solute-solvent interactions are described in terms of the electronic chemical potential for proton migration between the anion or cation and the transition state structure of a specific reaction. These indexes provide a quantitative estimation of the hydrogen bond (HB) acceptor basicity and the hydrogen bond donor acidity of the ionic solvent, respectively. A sound quantitative scale of HB strength is thereby obtained. The solvent dependent contributions are described by the global electrophilicity of the cation and nucleophilicity of the anion forming the ionic liquid. The model is illustrated for the kinetics of cycloaddition of cyclopentadiene towards acrolein. In general, cation HB acidity outweighs the remaining parameters for this reaction.  相似文献   

19.
Molecular interactions between uracil and nitrous acid (U–NA) [C4N2O2H4? NO2H] have been studied using B3LYP, B3PW91, and MP2 methods with different basis sets. The optimized geometries, harmonic vibrational frequencies, charge transfer, topological properties of electron density, nucleus‐independent chemical shift (NICS), and nuclear magnetic resonance one‐ and two‐bonds spin–spin coupling constants were calculated for U–NA complexes. In interaction between U and NA, eight cyclic complexes were obtained with two intermolecular hydrogen bonds N(C)HU…N(O) and OHNA…OU. In these complexes, uracil (U) simultaneously acts as proton acceptor and proton donor. The most stable complexes labeled, UNA1 and UNA2, are formed via NH bond of U with highest acidity and CO group of U with lowest proton affinity. There is a relationship between hydrogen bond distances and the corresponding frequency shifts. The solvent effect on complexes stability was examined using B3LYP method with the aug‐cc‐pVDZ basis set by applying the polarizable continuum model (PCM). The binding energies in the gas phase have also been compared with solvation energies computed using the PCM. Natural bond orbital analysis shows that in all complexes, the charge transfer takes place from U to NA. The results predict that the Lone Pair (LP)(O)U → σ*(O? H) and LP(N(O)NA → σ*(N(C)? H)U donor–acceptor interactions are most important interactions in these complexes. Atom in molecule analysis confirms that hydrogen bond contacts are electrostatic in nature and covalent nature of proton donor groups decreases upon complexation. The relationship between spin–spin coupling constant (1hJHY and 2hJHY) with interaction energy and electronic density at corresponding hydrogen bond critical points and H‐bonds distances are investigated. NICS used for indicating of aromaticity of U ring upon complexation. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号